
Computational Thinking Practices
ScratchEd Webinar Series
Monday, April 25, 2011
7pm-8pm EST
Hosted by Mitch Resnick and Karen Brennan





Computational Thinking



Computational thinking is a fundamental skill for everyone, 
not just for computer scientists.

Wing, Computational thinking



Computational Thinking
Computational concepts (March 28, Recorded)
Computational practices (Tonight)
Computational perspectives (May 23)



concepts
sequence
loops
parallelism
events

conditionals
operators
variables
lists



practices
incremental/iterative
testing/debugging
reusing/remixing
abstracting/modularizing



perspectives
expressing
connecting
understanding







practices
incremental/iterative
testing/debugging
reusing/remixing
abstracting/modularizing



incremental / iterative
developing a little bit, then trying it out, then developing some more







KB: OK, this is a complicated program. How long have you been working on it?

Scratcher: Maybe three, or maybe two, weeks.

KB: Are you working on it every day?

Scratcher: Like off and on, maybe even a month. Whenever I finished one of the levels, I 
would show it to my brother.

KB: You talked a bit about how you did a lot of the programming and your brother helped 
with the concept of the project. What was your process like?

Scratcher: We first came up with it on the way, but for levels 8, 9, and 10 we actually 
planned beforehand. My brother had this great idea about having level 10 having pins 
and bowling balls. He said, “That should be level 8” and I said, “No, no that should be 
level 10, that’s really hard” and he said, “ok, ok, ok”.

KB: Are there any secret codes or do you actually have to play to get to level 10?

Scratcher: You have to play. That’s a really good idea, but now you have to play through 
the whole game.



testing / debugging
making sure that things work – and finding and fixing mistakes



identify (the source of) the problem

read through your scripts

experiment with scripts

look for examples that work

tell/ask someone else about the problem

try writing scripts again

take a break



reusing / remixing
making something by building on what others – or you – have done







abstracting / modularizing
building something large by putting together collections of smaller parts







Supporting fluency with CT practices
incremental/iterative
testing/debugging
reusing/remixing
abstracting/modularizing



Thank You!
http://scratched.media.mit.edu
http://events.scratch.mit.edu

Next webinar: Computational Thinking Perspectives
Monday, May 23, 2011
7pm-8pm EST


