
UndergraduateK-12 Education

National Center for Women & Information Technology
P R O M I S I N G P R A C T I C E S

Snap, Create, and Share with Scratch (Case Study 5)
An Engaging Way to Introduce Computing

NCWIT offers practices for increasing and benefiting from gender diversity in
IT at the K-12, undergraduate, graduate, and career levels.

This case study describes a research-inspired practice that may need further
evaluation. Try it, and let us know your results.

Author | Lecia Barker
Copyright © 2008

RESOURCES

Malan, D.J., & Leitner, H.H. (2007). Scratch for budding computer scientists. SIGCSE Bulletin
	 (39) 1, 223-227.
Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice:
	 Urban youth learning programming with Scratch. SIGCSE Bulletin (40) 1, 367-371.

What makes Scratch so accessible to novices?
Scratch is a free “media rich programming environment” in
which novice programmers can quickly express their creativity
while learning computational thinking. Developed by the Lifelong
Kindergarten group at the MIT Media Lab, Scratch is used at both
the K-12 and undergraduate levels to reduce the barriers created
by a programming language’s abstract syntactic and semantic
rules. Instead, students “snap” together several categories of
“building blocks” (e.g., statements, loops, variables) to quickly
generate animations, games, and art. The building blocks only
snap together if they are syntactically appropriate. Students can
work both individually and in small teams.

Scratch is effective as a learning tool because it incorporates several
effective practices: it uses hands-on, active learning; it is visually
appealing; it allows users to express their own creativity and to
build on their own experiences; it gives immediate, understandable
feedback; and it allows users to avoid syntax errors without focusing
on minutiae, freeing them to focus on processes and concepts.

What computing concepts do students learn using
Scratch?
Educational researchers at MIT Media Lab and University of
California-Los Angeles studied Scratch scripts used in 425
programming projects created by 80 girls and boys ages 8-18
to determine which programming concepts they learned. The
researchers found that all these projects used sequential
execution and 90 percent used threads (multiple scripts running
in parallel). About half of the projects included loops and user
interaction and about a quarter included conditional statements
and synchronization. A smaller set included Boolean logic, random
numbers, and variables. The projects tended to include more of
these concepts the longer students used Scratch.

Assessment of Scratch as Transitional Tool
Although Scratch was originally designed for ages 8-16, several
universities are using Scratch in undergraduate courses, including
Harvard, Rutgers, and College of New Jersey. Harvard researchers
conducted a small classroom-based study on the use of Scratch
for entry-level programming at the undergraduate level. The
researchers used surveys to gather information about students’
prior programming experience, their experiences with Scratch, and
the ease of the post-Scratch transition into Java. Most students
felt that Scratch positively influenced their ability to learn Java.
Of the students who felt Scratch had no influence, all had prior
programming experience.

Scratch Community and Educator Support
The makers of Scratch created a social network of sorts within the
Scratch site. Users can post their project and remix others’ projects;
they can also discuss issues on the Scratch forum in several
languages. More than 200,000 projects have been posted on the
Scratch web site by novice programmers from around the world.
The “top-loved” project has more than 23,000 views and 635 votes
of “Love It.” More than 26,000 projects have been remixed by other
Scratch developers. The website also has a section especially for
educators, with videos and other resources for getting started and
ongoing support. Find out more here: http://scratch.mit.edu/.

Scratch-based Online Educational
Communities

A number of educators have begun posting lesson plans
and support materials to share with other teachers around
the world. For example, Karen Randall, an elementary
school teacher in Minnesota, has created a wiki (at http://
wiki.classroom20.com/Scratch) where people can share
Scratch materials. MIT Media Lab doctoral student Karen
Brennan is creating an online community called ScratchEd,
where educators will be able to share ideas, experiences,
and curriculum plans with one another (to be launched later
this year). Here are other sources of Scratch lesson plans
and materials:

	 http://nebomusic.net/scratch.html

	 http://coweb.cc.gatech.edu/ice-gt/446

	 http://www.learnscratch.org/

	 http://www.lero.ie/educationoutreach/secondlevel/
	 scratchlessonplans.html

NCWIT Investment Partners: National Science Foundation, Avaya, Microsoft, Pfizer,
and Bank of America

UndergraduateK-12 Education

National Center for Women & Information Technology
P R O M I S I N G P R A C T I C E S

How Do You Introduce Computing in an Engaging Way?
with Case Study 5

NCWIT offers practices for increasing and benefiting from gender diversity in IT at the K-12, undergraduate, graduate, and career levels.

Visit www.ncwit.org/practices to find out more.

Author | Lecia Barker
Copyright © 2008

RESOURCES

Lecia Barker and William Aspray, “The State of Research on Pre-College Experiences of Girls with Information Technology.” In McGrath Cohoon, J. and W. Aspray (Eds.) Women
	 and Information Technology: Research on the Reasons for Under-Representation. Cambridge, MA: MIT Press, 2006.
Joanne McGrath Cohoon and William Aspray, “A Critical Review of the Research on Women’s Participation in Postsecondary Computing Education.” In McGrath Cohoon, J. and
	 W. Aspray (Eds.) Women and Information Technology: Research on the Reasons for Under-Representation. Cambridge, MA: MIT Press, 2006.

making it meaningful

Educational researchers emphasize the importance of
linking educational materials and curricular programs
to students’ existing knowledge and experiences.
When class syllabi list topics and assignments that
focus on unfamiliar concepts with limited, if any,
relationship to a student’s life experience or interests,
she or he is unlikely to take that class. High school
curricula contribute to low enrollments in college
computing because, under the existing educational
policy of election, computing is rarely required in
secondary schools. This means that students are
likely to have a narrow and inaccurate view of what IT
study involves, what careers are possible, or what kind
of people “do” IT. Given the very small proportion of
females who study computing in high school, females
are less likely to choose IT in college.

The challenge to educators at all levels is to develop
engaging assignments and curriculum that can appeal
to a variety of students with different learning styles,
interests, socio-cultural backgrounds, and abilities,
while maintaining the rigor of the discipline. Putting
the concepts of computing in appealing contexts and
building on existing competence can both reduce
entry barriers and level the playing field for those with
limited experience.

Experience with computers between boys and girls has
equalized, but boys continue to have greater knowledge of
computing and programming concepts than do girls. Not
so in biology, chemistry, or mathematics, where both boys
and girls are encouraged to provide evidence of proficiency
when they apply to college. High school study of these
subjects familiarizes students with the content and concepts,
and gives them confidence. The result is that women’s
undergraduate completion rates have neared parity in these
disciplines.

Because IT study is elective in almost all K-12 schools,
developing relevant and interesting assignments that appeal
to a broader audience is recommended for:

fostering a climate where the non-predisposed can belong
both academically and socially

recruiting students who are not predisposed to pursuing
computing

exposing fundamental computing concepts to
inexperienced learners

Is prior programming experience required for students
to be successful in an IT program? Most undergraduate
departments would say no. That is, experience with
programming is not the same as expertise in problem-
solving, algorithmic thinking, or computing theory. Yet
research shows that introductory courses and their
embedded assignments work better for students who have
some experience with programming.

Research also shows that students with programming
experience are more confident and more successful in
introductory courses than are their inexperienced peers.
Students with lower grades or less confidence are less likely
to persist in an IT major. What is more, when introductory
courses have limited opportunities for talking to other students
(e.g., collaborative learning), inexperienced students have
little information on which to judge whether they belong
academically in the major. Hence more women than men
switch out of IT majors (most often to other sciences or
mathematics).

Creative assignments that teach algorithmic thinking
while also calling on students’ existing knowledge or
interests, may serve to both recruit and retain students. When
experienced and inexperienced students use non-computer-
based assignments to learn computing concepts, they
quickly realize that their peers with programming experience
are not necessarily better at algorithmic thinking, just more
experienced with programming. Building confidence through
relevant and interesting assignments is a promising practice
for motivating student enrollment and retention.

NCWIT Investment Partners: National Science Foundation, Avaya, Microsoft, Pfizer, and Bank of America

