Project 1 – Using the Light Sensor

Josh Ferguson

Project 1 – Using The Light Sensor

Overview: For this project, we are going to create a vehicle that moves along various sceneries and changes brightness with the input of the light sensor on the PicoBoard.

First we must pick our vehicle sprite and stage images. This can be done by clicking the Sprite and Stage windows on the far right of the screen. *Remember we are selecting stages based on differences in light, so try to choose 3 stages with varying brightness.*

STAGE 1 – THE VEHICLE MOVEMENT

Goals

· Have the vehicle move from right to left and when it reaches the
 edge move back to the left side of the screen

· Change the brightness of the car based on the light sensor

First, we will start on the movement of the car. We need to select the sprite of the car, so find the image of the sprite in the bottom right corner and click on it. Now we are in the car's sprite code box.

First we need to have the script initiate when we click the green flag. So add the “when clicked” button to the code box.

[image: image1.emf]

We want our car to run until the program is stopped, so we must add a forever loop.

[image: image2.emf]

Now that our movement is started, and we have it set in a loop we need to check and see if our car is touching the edge. We can do this by an if statement. If the vehicle is not touching the edge, we want our car to move. So for this we will use an if else statement. So next add your if else statement within your forever loop.

[image: image3.emf]

Now that we have our if else statement we need to insert what we desire our car to do. Remember from before we decided to have the if check if we have touched the edge to restart back on the left of the screen. We are going to place are car at an approximate location. Warning: When resetting the car to the left side, if we put it too close to the edge it will still meet the condition of “touching the edge,” this will result in an infinite loop By hovering the mouse over the animation screen in the top right corner we can find the x and y values of the screen. For this project, X: -130 and Y: - 100 works splendidly. So we must add a “go to X :_Y:_” found under the movement tab.

For the else statement we want our car to move. Since it is in a loop, the car will move and repeat moving until it hits the edge. So under the motion tab you will find a “move steps” command which we will set to 1 (anything higher than one will just make the car move faster.)

[image: image4.emf]

Next we need to add our conditional statement that will determine if the car is in fact touching the edge. Luckily enough, Scratch has a “touching edge” script. Under the sensing tab you will find the “touching___” script with a drop down menu. Click the drop down menu, select “edge,” then add it to the code box in the “if's” condition space (hexagon blank.)

[image: image5.emf]

Congratulations! You have created your first bit of working code in Scratch. Click the “green flag” button on the top right and watch your car move and bounce back when it hits the edge.

STAGE 2 – CHANGING THE STAGES

Goals

· Have the stages cycle when the car hits the edge of the screen

Since we are editing the stages we need to go to the stage code box, so again click on the stage icon in the bottom right corner. Once we have the stage code box open we are ready to begin.

In order to change the stages based on when the car touches the edge, luckily Scratch has a built in broadcast option which is very useful in this situation. Go to the control tab and find the “when I receive ___” script, add it to the code box, then click on the drop down menu and create a new message. It is important to name this message something relevant and is good practice for coding in any language. Since we are changing the background, it makes perfect sense to name it: change background.

[image: image6.emf]

Next we need to tell our stage to change after the change background has been broadcasted. This is simple enough, just go to the looks tab and you will find there is already a “next background” script, and simply add it under the “when I receive change background.”

[image: image7.emf]

Now that we have told the stages to change to the next background when the broadcast is received, we need to have the vehicle broadcast when it touches the edge. So we need to go back to our vehicle's sprite code box. Under the “if touching edge” we add the “broadcast change background” that we just created.

[image: image8.emf]

Now we have our second bit of working code complete. Go ahead and hit the green flag and try it out!

STAGE 3 – DARKENING THE VEHICLE AND STAGES BASED ON THE LIGHT

 SENSOR

Goals

· Change the vehicle shade by the light sensor value

· Change the stage shade by the light sensor value

As the light sensor reads lower values we are going to want to darken our sprite and stages in order to have them change in sync with our PicoBoard. We want this effect to take place as soon as we run the program, so again we are going to add the “when clicked” script to start, and also our forever loop just as we did in stage one.

[image: image9.emf]

Next comes the tricky part. In order to change the shade of the sprite we are going to need to go to the looks tab and add the “set ___ effect to _” script to our code box. Next, under the first drop down menu, we are going to change it to “brightness”. For now it is fine to leave the value as it is.

[image: image10.emf]

Now we are going to tell it to set the brightness by the value of the light sensor. Under the sensing tab we can find the “____ sensor value.” Change the drop down menu to “light,” and drop it in the code box. It isn't necessary to add it to the “set brightness effect to _” script yet, because we have some problems that must be addressed first.

As our code stands now, it is setting the brightness, this is just a default that Scratch has chosen to use, but we are going for darkness. This may seem like a problem, but this can be fixed easily by brightening our sprite by a negative value, which will actually be darkening our sprite. This can be done by simply multiplying the sensor value by -1.

Under the operators tab we can add the “_*_,” which is the multiplication operator. Add -1 to the second box. Again we have some more number crunching to do, so we will leave this code out as well.

[image: image11.emf]

As of right now our light sensor is giving us a value from 0 to 100 (0 being the darkest, and 100 being the brightest,) and we are negating this value to make it darker. Seems like were on the right track, but there is a very big flaw with this. As the light sensor value is at 100, the light is the brightest, yet we are adding -100 to the darkness. So in simple terms when things are at its brightest, we are making things their darkest. This again seems like a major problem, but can be fixed easily with some logic and math!

If we want the values to coincide, we simply can just subtract our light sensor value from 100. So when things are at its brightest (100,) we will not make our sprite any darker (100-100 = 0,) and on the same lines when things are at their darkest (0,) we will make our sprite 100 percent darker (0-100 = - 100.) Since we are multiplying our value by -1, our darkness will be (-100 * -1 = 100.) This will work for all of the values given by the light sensor.

Now I know this seems like a lot of math, but try the code with out the “_ * -1” or without the “100 – light sensor value,” and explore the effects. This may make things a little more clear.

Here is the completed code should look like:

[image: image12.emf]

Next, we are going to need to do them same for our stages. Luckily for us, Scratch has a simple solution for copying our code. Right click on the code block and select duplicate. Now drag the newly created code block to the stages icon, and when it becomes highlighted simply click. Now check your stages code box, and our code should be copied and functional as well.

We have completed our first PicoBoard/Scratch program! Now plug in your PicoBoard and run our code. Play with moving the board in different lights and explore the darkness values you can achieve!

Project 1.2 – Taking things one step further

Our car can now drive in light and dark situations, but when it is dark, where are our headlights? We wouldn't be very safe drivers without them would we, so lets add them!

STAGE 1.1 ADDING HEADLIGHTS

First we are going to need to add headlights, and this can be done by adding a new sprite. Unfortunately Scratch doesn't have a headlights sprite as a default. I have already crated one using the create a new sprite program nested in Scratch. It can be found in between the animation screen and the sprite boxes.

[image: image13.emf]

Creating a new sprite can be fun, but for now we can just use the one that I have created, but if you really want to be adventurous, go ahead and begin to try to create your own! Simply right click and save the headlight sprite below and add new sprite from file (which is located right beside the paint new sprite button.)

To begin, we again want to start the headlight code when the green flag is pressed, so we are going to add the “when clicked” sprite, and just like before we also want this to repeat forever, so add a forever loop.

First we need to set where our headlights are going to be, we can do this just as we did with our vehicle with a “go to x:_ y:_” script, but this time we are going to need it to be relevant to our cars location since it is moving.

[image: image14.emf]

Now for our x and y values, we are going to need to use the position of the car. Under the sensing tab, you can find a script that says “ x position of ____.” We will need to of these, one for the x value and one for the y value, so drag them in the their respective boxes, and using the drop down box, change them to the proper values. Next, we need to tell it where to get the x and why values, so using the second drop box change it to your car sprite.

[image: image15.emf]
 Now we can give the code a try! Hopefully, you will see there is a problem. The headlights are in the middle of the car, because it is going to the central point. In order to fix this we are going to have to change the x position and y position slightly. We can do this using the operation scripts.

Here is where things get a little tricky. Depending on which sprite you used you will have to use different values lining them up even with the front of the car. So you will have to fool around with different operations getting them to set properly on your car. Here is how my code looks like using the cow-car sprite.

[image: image16.emf]

As you can see I had to change the x position by 140, and the y position by -30. I found these values by plugging in values until they lined up how I wanted them.

STAGE 1.2 – Turning the Headlights Off During the Day

We don't need to be using our headlights during the day, so as an added bonus, we can use our coding skills to turn them off.

When we think about when they should turn off, we should be reminded of our if else statement. So lets add an if else statement to our code. Now we need to decide when the lights should go off. I have found that when the light sensor is 50 it seems to be a good point to turn off, but you can experiment with another value if you find it works better with your stages.

[image: image17.emf]

Now we need to decide what to do with our lights. Headlights are easier to see the darker it is, so how about we make our lights become brighter as the scene becomes darker. We can do this easily with the ghost function provided by Scratch. Under the looks tab find the “set ___ effect to _” script and drag it to both your if and else statements.

The ghost effect determines the transparency of our sprite. When the light sensor is greater than 50, we want our lights to be off. We can do this by setting the ghost effect to 100. This will make them completely invisible (or off.)

[image: image18.emf]

What about when it becomes dark? We want our lights to come on, but become brighter the darker it becomes in our scene. We can do this with the ghost effect, but we also need to tie it with the light sensor value. So in the “set Ghost effect to _” box we will add our light sensor value, and test out your program.

The lights do brighten with the light, but the effect isn't very strong. We can make the fading more dramatic by altering the light sensor value. Multiplying it by 2 seems to make the brightening more noticeable, yet not by too much. So we can simply go to the operators tab and drag in the “_*_” script, and place the light sensor value in the first space and 2 in the next. Place this code back in your else statement and we're complete!

[image: image19.emf]

Make sure you test, and experiment with your code, this is one of the most beneficial ways for learning the Scratch language, and what the various scripts do. For example try changing the brightness effect to color, or switching the operators controlling your else if statements.

