
Computational Thinking Practices

ScratchEd Webinar Series

Monday, April 25, 2011

7pm-8pm EST

Hosted by Mitch Resnick and Karen Brennan






Computational Thinking




Computational thinking is a fundamental skill for everyone, 
not just for computer scientists.


Wing, Computational thinking




Computational Thinking

Computational concepts (March 28, Recorded)

Computational practices (Tonight)

Computational perspectives (May 23)




concepts

sequence

loops

parallelism

events


conditionals

operators

variables

lists




practices

incremental/iterative

testing/debugging

reusing/remixing

abstracting/modularizing




perspectives

expressing

connecting

understanding








practices

incremental/iterative

testing/debugging

reusing/remixing

abstracting/modularizing




incremental / iterative

developing a little bit, then trying it out, then developing some more








KB: OK, this is a complicated program. How long have you been working on it?


Scratcher: Maybe three, or maybe two, weeks.


KB: Are you working on it every day?


Scratcher: Like off and on, maybe even a month. Whenever I finished one of the levels, I 
would show it to my brother.


KB: You talked a bit about how you did a lot of the programming and your brother helped 
with the concept of the project. What was your process like?


Scratcher: We first came up with it on the way, but for levels 8, 9, and 10 we actually 
planned beforehand. My brother had this great idea about having level 10 having pins 
and bowling balls. He said, “That should be level 8” and I said, “No, no that should be 
level 10, that’s really hard” and he said, “ok, ok, ok”.


KB: Are there any secret codes or do you actually have to play to get to level 10?


Scratcher: You have to play. That’s a really good idea, but now you have to play through 
the whole game.




testing / debugging

making sure that things work – and finding and fixing mistakes




identify (the source of) the problem


read through your scripts


experiment with scripts


look for examples that work


tell/ask someone else about the problem


try writing scripts again


take a break




reusing / remixing

making something by building on what others – or you – have done








abstracting / modularizing

building something large by putting together collections of smaller parts








Supporting fluency with CT practices

incremental/iterative

testing/debugging

reusing/remixing

abstracting/modularizing




Thank You!

http://scratched.media.mit.edu

http://events.scratch.mit.edu


Next webinar: Computational Thinking Perspectives

Monday, May 23, 2011

7pm-8pm EST



