
3/20/10 11:27 AMCS202 Project 1

Page 1 of 5http://pages.cs.wisc.edu/~dusseau/Classes/CS202/Assignments/project1

My UW | UW Search

Computer Science Home
Page
> ~dusseau

A. Arpaci-Dusseau Home

CS 202 Home

Schedule

Assignments

Related Links

C.S. Dept.
 Home Page

CS 202 Spring 2010: Project 1

Programming Project 1 : Due Thursday 2/24 (Midnight) - NO LATE PROJECTS
ACCEPTED
The goal of this project is to create an animated music video or animated
poem.

Your animation can be anything you feel that illustrates the music or poem
you've chosen. Your animation could be artistic, abstract patterns. Your
animation could be specific pictures that act out the action. Your animation
could be text and symbols that match the music or poem.

Of course, the images that you choose should match in some way with your
music or poem; they should match either in topic or in mood. You might want
to think about ways in which you can change the pace of your animation to
match the tempo of the music. To personalize your project, we strongly
encourage you to draw you own costumes or import images that are not part
of the standard Scratch installation.

Your animation is not expected to be interactive; that is, the actions of the
user (e.g., clicking the mouse or typing characters) are not expected to
change how the animation behaves. Your animation can have a random
component: the exact location or color or shapes of visual effects can be
slightly different from run to run.

Probably the best way to convey what we expect from your project is to give
you some examples. We assume you will investigate all of these samples
before developing your own.

1.

Remember the video Outside to Play that I showed in the first Lecture?
I think this is a great example of a project you can rather easily
implement. You'll want to download the code from the Scratch website
to see how they make it look like different flowers are growing.

2.

http://www.wisc.edu/
http://my.wisc.edu/portal/
http://www.wisc.edu/wiscinfo/search/google.html
http://www.cs.wisc.edu/
http://pages.cs.wisc.edu/~dusseau/index.html
http://pages.cs.wisc.edu/~dusseau/Classes/CS202/index.html
http://pages.cs.wisc.edu/~dusseau/Classes/CS202/schedule.html
http://pages.cs.wisc.edu/~dusseau/Classes/CS202/assign.html
http://pages.cs.wisc.edu/~dusseau/Classes/CS202/links.html
http://www.cs.wisc.edu/
http://www.cs.wisc.edu/
http://scratch.mit.edu/projects/atyo-dickerson/325148

3/20/10 11:27 AMCS202 Project 1

Page 2 of 5http://pages.cs.wisc.edu/~dusseau/Classes/CS202/Assignments/project1

On the Scratch website, Contrails shows two jet planes in the sky as a
road and trees cycles underneath. It contains some neat effects. Make
sure you download the code to understand how they make that
scrolling happen!

3.

This project plays its music in a different way. Instead of playing a
recording, the authors are using the "play note" blocks within Scratch
to compose music. The animation that goes along with it isn't bad
either!

4.

The Scratch application includes a number of interesting Examples that
you can run when you click under File and Open... (click on the
Examples box on the left-hand side of the pop-up window). Under the
category Music and Dance you'll see a lot of great examples. I
particularly like 4 TwinkleTwinkle. You can imagine this is an example
of an animated poem.

5.

You should also look at a much more sophisticated interpretation of the
music video. You can watch this Ted talk Jakob Trollback rethinks the
music video in less than 4 minutes. This music video wasn't
implemented in Scratch, but it will probably give you some great ideas.

At a minimum, you should absolutely investigate the four examples given
above, but there are other interesting projects as well.

http://scratch.mit.edu/projects/keithbraafladt/156
http://scratch.mit.edu/projects/goch/500796
http://www.ted.com/talks/lang/eng/jakob_trollback_rethinks_the_music_video.html

3/20/10 11:27 AMCS202 Project 1

Page 3 of 5http://pages.cs.wisc.edu/~dusseau/Classes/CS202/Assignments/project1

For example, we suggest exploring more of the Example projects included
with Scratch. Under the Animation category, you might find inspiration from
6 Aquarium (shown above). Under the Interactive Art, I like 7 Garden
Secret (shown above). These projects are a little simplistic, but you can still
use ideas from them as a starting point.

The Scratch web site has many other interesting examples as well. We
suggest looking for projects that have been tagged as Music

Finally, if you are interested in creating a visualization of a poem, this very
short Ted talk called "Rives tells a story of mixed emoticons" will probably
give you more ideas.

We expect that you will put many hours of thought and work into this project.
Do not wait until the last minute to start implementing your project! Code
written in a rush rarely works the way you hope it might! If you start your
project promptly, it will be much easier to get help and advice from the
Instructor and TA.

In terms of the final product, we expect that you will create a project of
similar complexity to the first five examples given on this page.

Specification
The only requirement for this project is that you create a visual effect that
complements either some accompanying music or a poem.

If you choose to accompany music, you can choose any music you like. You
have a number of options here. First, you can import any music file you have
access to (e.g., .mp3 or uncompressed .wav or .aif or .au file formats, but
not .mp4) into Scratch. Second, you can use the Sound clips that are
included with Scratch; however, none of these clips are very long, so you are
likely to need to play several clips one after another to get a "song" worth
animating. Third, you can use the "play note" blocks to compose and play
your own music in Scratch (like the Castle example above). Fourth, if you are
very brave, you can always record yourself singing!

If you choose to illustrate a poem you can choose any poem you like. You
can write a poem yourself or you can use an existing one. You can record
yourself reciting the poem and play that recording simultaneously with your
visualization. Or, you can have the text of the poem appear on the Stage.

Implementation Hints
As always, you should strive to write code that is easy for others to
understand and easy for you to modify. This usually corresponds to writing
code in a compact manner and code that is identical across all Sprites that

http://www.ted.com/index.php/talks/rives_tells_a_story_of_mixed_emoticons.html

3/20/10 11:27 AMCS202 Project 1

Page 4 of 5http://pages.cs.wisc.edu/~dusseau/Classes/CS202/Assignments/project1

are doing the same actions (with perhaps only local variables and initialization
code differing across similar Sprites).

We recommend writing small amounts of code and immediately testing that
code to see that it works correctly before writing more code. Get each step
working correctly before you move on to the next step!

Documenting your Code
Part of your grade will be based on how well you document your code.

Code must be documented so that others can understand how it works. You
will find documenting your own code useful: it is very easy to forget how
code operates, even when you are the one who originally designed it!
Because documentation is so important, your project grade will be partially
based on the quality of your documentation.

Documenting the behavior of your code has three components:

1. Use good naming. All of your Sprites (and their Costumes) should
have descriptive names. The name of a Sprite can be changed in the
text box above the Tabs for Scripts, Costumes, and Sounds.

All of your variables should have descriptive names. Variables which are
accessed across multiple different scripts or Sprites should be named
with the convention "First Letters Capitalized. Local variables which are
not used outside of one script should be in all "lowercase".

All of you messages (for broadcasts and receives) should have
descriptive names as well. For a message X, to help show which Sprite
sends it and which receives it, it can be useful to name the message
"Sender : X : Receiver" (where Sender and Receiver are the names of
those Sprites, respectively). As a short-cut, if a message is both sent
and received within a single Sprite, you can omit "Sender" and
"Receiver". If a message is sent by multiple Sprites (or received by
multiple Sprites), you don't have to list all Sprites; instead you can just
say "Many". For example, if Sprite1 sends the message "Game Over" to
multiple Sprites, you should name that message "Sprite1: Game Over:
Many".

2. Write Comments. Each Script that changes the value of Variables that
are accessed in other scripts should describe its usage. The Comment
should be connected to the Script. The Comment should describe every
Input Variable and the assumptions that are made about those
variables. The Comment should describe every Output Variable and how
they will be set and what different values mean. (You don't need to
make a comment for Scripts that don't access global variables, unless
you want to!.)

3. Project Notes. Every Scratch project has Project Notes associated with
it. These notes should describe how one can use this project (i.e., the
basic rules for playing the game and how to interact with the program).
The note should also describe any known bugs or problems. Project
Notes can be written from the "File" pull-down menu. Your project
notes should give the name and author of the music or poem you
have incorporated.

3/20/10 11:27 AMCS202 Project 1

Page 5 of 5http://pages.cs.wisc.edu/~dusseau/Classes/CS202/Assignments/project1

Developing your Code
As always, programming assignments and projects in this class should be
done on your own. You may ask other students in the class questions, but
you may not share code with anyone in the class. You may not use
existing code that you find elsewhere, including the Scratch website. You
may look at the behavior of existing Scratch projects for inspiration, but you
should develop all of your code as a completely new project and not modify,
re-mix, or build from any one else's code.

The Instructor and the TA are very happy to give you suggestions on how to
implement your ideas. We won't necessarily give the answer, but we will try
to guide you to a reasonable implementation. If you have bugs in your code
(i.e., it isn't behaving like you expect), we are happy to take a look and see
if we can see the problem. But, again, don't wait until the last minute to do
your project if you are hoping for any advice!

Grading your Code
Your project grade will be based on the following components:

Creativity/Effort (30 points) Does it look like you put effort into the
project? Do the backgrounds, characters, and objects have a logical
and/or interesting theme?
Documentation (20 points) Do you have good, descriptive names for
sprites, costumes, variables, and broadcasts? Did you write comments
where appropriate and use the project notes?
Specification (15 points) How closely did you follow the specification
for the project? Did you implement all of the features we asked you to?
Code Style (15 points) Do you use the correct programming
structures?
Demo (20 points) Were you able to explain how your code works to
the TA in your demo? Did you show your project to the class?

Turning in your Project Code
You should upload your project Scratch file (ending with the extension .sb) to
your Learn@UW Project1 folder. If you have any problems uploading your
code, send us email right away!

Computer Sciences | UW Home

Feedback or content questions: send email to "dusseau" at the cs.wisc.edu server
Technical or accessibility issues: lab@cs.wisc.edu

Copyright © 2002, 2003 The Board of Regents of the University of Wisconsin System.

http://www.cs.wisc.edu/
http://www.wisc.edu/
mailto:lab@cs.wisc.edu

