Week 7 Homework: Start an Adventure

1) Complete your Points Game and Share it

You should have completed your first game already. It would be great for you to Share your game on the Scratch website.

If your computer is connected to a network and you click on the Share button at the top of Scratch, you can upload your Scratch program to the Scratch website! If you haven’t created an account on the Scratch website yet, the Share menu will lead you to a web browser where you can do this.

After you’ve uploaded your program with Scratch, you can then use your web browser to look at your program and other kids’ programs. Please add your game to the Shorewood Kids gallery, by going here:

http://scratch.mit.edu/galleries/view/38302
2) Start your Adventure Game

You should start thinking about what you want your adventure game to look like. Some questions to think about include the following.

What is the goal of your game? Do you get points for certain actions? Can you be hurt? Is there a time limit? Do you want the user to look down on the world (like in the maze game) or be inside the world?

How does the main character move from level to level? (For example, is there a door? how does the character activate the door?)

Are there bad characters? How can the main character avoid the bad guys? Can they stop the bad guys? Does the main character need to pick up weapons first? Is there a limit to how many objects can be picked up?

Can the main character replenish their health (or get more time) by picking up objects? Do any objects change the behavior of the main character (e.g., let them be invincible or walk through walls or just change their looks)?

This week, start one level of your game with some interesting objects to pick up.

Lesson 7: Start an Adventure

[image: image1.png]Pick me up!

Pick me up! ——

@ I Pick me up!

S

[image: image2.png]

In this lesson, you’ll begin a new game, an adventure game. The user controls the main character, the red car, through the maze using the arrow keys. The car is not able to move through the maze walls. The car needs to pick up the King and the Key before it is allowed to move through the door at the upper right of the maze. The car can also pick up the banana before moving on – maybe the banana will be useful in the future and maybe it won’t!

You’ll learn about two Scratch blocks. First, you’ll learn about the color <x> is touching <y> question block. This is used to prevent the car from moving through purple walls. Second, you’ll learn about the wait until control block. The key, king, and banana objects will wait until they are picked up.

You’ll also get more practice with variables and the broadcast message and When I receive message control blocks. Variables will remember which objects have been picked up. The broadcast message block will be used for the door Sprite to tell the background to change.
This lesson has three steps:

1. Tell your main character how to move through the maze.

2. Create objects that can be picked up

3. Let the character move through the door after they’ve picked up the objects.

1) Move the main character through the maze

Use the paint tool to create a maze as a background. Make sure all of the paths are large enough for your main character to move through. Just use a single color.

 [image: image3.png]

 [image: image4.png]

Pick a main character, such as a car. Write code so that the Sprite can move up, down, left, and right. You can use the point in direction block, move 5 steps at a time, and set the rotation property of the Sprite to None.

What is the problem? The car can move through walls! How can you have the car detect there is a wall and not move IF there is a wall? You might try saying “move 5 steps” if car NOT touching purple. Try this out.

The problem is if the car ever touches a wall, it gets stuck. We need a way to figure out that if the wall is to the right of the car, then the car can’t move to the right – but it should still be able to move up, down, and left to get away from the wall. Likewise, if the wall is to the left of the car, then the car can’t move left, but it should still be able to move right, up, and down.

We can detect which side of the car is touching the wall by painting a different color outline around the four sides of the car. For example, we can use red for the top, blue for the bottom, green for left, and yellow for right. This is a bit time-consuming, but it is worth it! Once you have the car outlined, then, the car can ask if “red is touching the purple wall”; if it is, then the car should NOT be able to move up. Similar for all four directions.

Write the initialization code to specify where the car starts in the maze.

2) Create objects to be picked up

Think about what the main character might need to pick up in the game. A key? A friend? Food? Potions? Weapons? Place these objects in different locations in the maze. Write initialization code so the objects appear in good places with a good size. Maybe the object should say something so the main character knows to pick it up.

Let us start with a key. We need the key to detect when it is picked up. The question it wants to ask is touching car? When the answer to this question is TRUE, the key wants to do something special. Let’s just have the object hide when it is touched for now.

You might think the key could ask this question and then hide using a simple if control block. But, that will NOT work, because the key will only ask this question one time, at which point the key probably is not touching the car We need to key to wait until it is touching the car and then hide. It can do this with the wait until block. The wait until block does not let the blocks after it run until after the answer is true. Try this out.

To be a little fancier, instead of just hiding when the key is picked up, we can show the key inside the car! We can do this with the go to car block; the key should forever : go to car. This almost works, but you might not like the exact location of the key, especially when you can pick up multiple objects – they will all show up in the exact same location, one on top of another. To fix this, you can replace go to car with go to x: <x position of car> y: <y position of car> and slightly adjust the (x, y) coordinates by adding or subtracting small amounts. You also might find you want to go back 1 layers and change size of the object when it is picked up.

3) Pass through door to next level

Finally, we want the player to be able to move to multiple levels in our game. Maybe every level will have different objects and mazes. To get to the next level, the car has to go through the door.

Make a door Sprite and place it in a good location in the maze. We want the door to detect when the car touches it. How can it do that? We already saw that a Sprite can wait until that question is true.

After the car touches the door, what should the door do? It needs to tell the Stage to change backgrounds. As we learned in the last lesson, the way for one Sprite to tell another Sprite something is for the door Sprite to broadcast a message to all of the other Sprites; the Stage will receive this message. When the Stage receives the message, it should switch backgrounds. For now, lets just make a To be Continued background.

What if you want the user to have to pick up the key before the door can be opened? How can the door figure out if the user has picked up the key or not? We need Scratch to remember something about what has happened in the game already, which is a good hint that we need a variable. This variable Got Key will remember whether or not the key is picked up. We’ll use the value 1 to mean True, the user picked up the key. We’ll use the value 0 to mean False, the user has not picked up the key yet.

Which sprite should set that variable? The Key should. It knows when it is picked up. Right after the wait until block it can set set Got Key to 1. It should initialize Got Key to 0 when the Green Flag is clicked.

Now, the door Sprite can check the Got Key variable and only open when Got Key is equal to 1. How can we change the door Scripts to do this? Instead of waiting until touching Car, it should wait until it is touching car And Got Key equals 1. If the answer to only one of those questions is true, the door should not open…

Things to Remember

A useful question, or sensing block, is to ask whether a color on one Sprite is touching another color. By editing a Sprite’s costume to be outlined with different colors, you can figure out what side of a Sprite is touching an object. This is helpful for maze games. It is also helpful if you want to make different floors you want a Sprite to be able to jump on and not fall through.

The wait until control block waits until the question being asked is true. The blocks after the wait until block will not be run until the answer is true.
A variable is a way for your program to remember something. Variables can record the answer to a question inside of your program: for example, has the car picked up the key yet? Has the car picked up the king yet? Computer scientists like to use the value 1 to mean True and the value 0 to mean False. Always remember to initialize your variables!

One Sprite can give a message to another Sprite using the block broadcast. Sprites can receive this message with the block When I receive. This is useful whenever one Sprite figures something out that is useful for another Sprite to know: for example, has the car touched the door? The door answers the question and tells the Background to change to the next level.

Final Scripts: Car

[image: image5.png]g0 to front

9o to

move @ steps

point in direction

move @ steps

point in direction

color iz touching 2

move @ steps

point in direction €18

move @ steps

Final Costume: Car (Notice painted outlines)

[image: image6.png]

Final Scripts: King (similar for Key)

[image: image7.png]

Final Scripts: Door

[image: image8.png]

Final Scripts: Stage
[image: image9.png]T —

T —T

