
Extreme Environments: Building a Lunar Lander Simulator

Project Overview

 For this program we are going to build a lunar lander to explore

the extreme environment of the moon. In 1969, the very first lunar lan-

der took man to the moon and back to his spaceship for the very first

time. There were several problems scientist had to overcome when

building this first lunar lander.

 First, it had to be lightweight yet strong enough to survive its

landing on the moon. It had to carry sufficient fuel so that it could land

without crashing and return to the mother ship. The moon has no air

but it does have gravity that pulled the lunar lander to the surface.

When the lander was landing it could travel side to side with nothing able to stop it except for

the thrusts from a rocket. Yet the lunar lander need to have enough fuel to land at a slow

enough speed not to crash into the moon.

For this program you will need to design your lander to control for it side to side motion

as well as, it's speed of descent. On the moon an object that is traveling side to side will con-

tinue to do so unless rockets are fired to stop it. This is known as inertia, a law of physics that

says something set in motion keeps moving that direction unless something else stops it. On the

earth air eventually slows all objects, but on the moon there is no air to slow something down.

You will also need to control a bottom rocket on your lander that will slow your descent

and stop you from crashing into the moon at a speed that will destroy your lander.

Technical Challenges

When scientists and engineers

were designing the first real lunar lander

there were several technical challenges

they need to overcome. We must over-

come the same challenges in building

our lunar lander. When constructing

software in SCRATCH remember that

all objects on the stage move in relation

to a series of X and Y coordinates.

Objects going up the screen towards the

top are going to increase in Y value.

The thrust of a rockets will increase the

value of Y of our lander on the screen.

Gravity, is pulling our lander to a

negative (or minus) Y value to the bot-

tom of the screen. Remember that when

we designed our gravity system in

SCRATCH, objects speed up as a fall

back to earth from the top of the screen

to the bottom of the screen. Thrust must

be used by our lander to slow down the

pull of gravity so that our lander does

not crash before running out of fuel.

Also, our lander must be able to move side to side in order to land it on the landing pad. Remember that

inertia on the moon says that if an object is moving from one side to another you must apply thrust in the opposite

direction in order to slow it down. For your program to simulate inertia you must use recursion (looping) in your

software so that your program will make decisions about the pull of gravity and how the force of inertia inertia will

act on your lander regardless of what the person piloting your lander does. In other words, the X value of your

lander will continue to increase or decrease in value once thrust has been applied in one direction or the other.

For this program your job will be to create a lander that takes off on one landing pad and is able to land

softly on another. With that let's get started on writing our program.

Setting Up Variables

 To start your program off we are going to create three variables.

The first variable we will call fuel. This variable will be used to calcu-

late the amount of fuel remaining in your lander that can be used to ap-

ply rockets with. The next variable we will call X speed. The Xspeed

variable will be used to calculate how fast the lander is traveling in a left

or right direction on the screen. Rockets on each side of the lander can

be used to increase the left or right speed of the lander BUT the opposite

rockets must be applied when piloting as there is nothing to stop the lan-

der from continuing left or right on the moon (inertia). The third vari-

able we will create is called Yspeed. Yspeed is used to calculate the

speed the lander is traveling up or down in relation to the moon. If rock-

ets are applied in the value of Yspeed will increase as the lander pushes

up from the moon. If rockets are stopped the value of Y speed will de-

crease as gravity pulls the lander back to the moon. Rockets must be

applied so that the lander falls at a slow enough speed through the pull of

gravity to land on the pad but not so fast that breaks the lander. I will

also check the fuel and Y speed variables so that they can be viewed on

the screen. This will allow me to see how much fuel I'm using in my landing attempt and the speed of my lander as

it goes up and comes down (descends).

Setting Up Sprites and Costumes

 We will now set up our initial sprites and

provide costumes to those sprites. I will start by

creating three sprites. The first will be my lander

and I will name it Ship. The next two I will name

Starting Pad and Landing Pad and will make

these objects my lander can sit on.

 For the next step, I will provide a

Costume to my background. This can be

any costume that covers the background

that you like. For mine I have chosen a

Moonscape although yours does not have

to be this. Next, I will provide my lander

with three different costumes. The first one

I will call noThrust, the second one

Landed, and the third one Crashed. While

what these look like is up to you, the names

are significant within the program. While

you may change the names of the cos-

tumes, you will also need to adjust your

program accordingly.

Writing the Starting & Landing Scripts

 For my program I have chosen to use the

green flag to start each attempt with the lander. As

such, each script will reset when the green flag is

clicked.

 I start by writing my script for the Starting

and Landing pads which are very similar. When the

green flag is clicked I have both my pads make sure

they are showing themselves on the screen, they set

the location they should be (X & Y Position) at and

move themselves to the front. By moving them-

selves to the front this ensures they can be

“sensed”by a blue sensing block from the lander

(later when we write this script).

 Remember that to set an initial location of an

object, move the object on the screen in the place

you want it, then double-click on that object. You

can then drag a motion block out and location it was

in when you double-click it will be set on that

block.

Writing the Lander Set-up Script

Most of the work in this program is done by the script attached to the lander. In the

sprites window select the Lander sprite and then click on the scripts tab. The first script we are

going to write is to set the lander up when the green flag is first clicked.

When the green flag is clicked we want to set the Yspeed

and Xspeed variables values to zero. This is because our

lander is not yet moving. We want to set our fuel variable to

5 to give our lander its initial amount of fuel. We will sub-

tract from this value later on the program as the rockets are

used. We'll use a motion block to set our initial lander loca-

tion on top of the start pad and switch our costume to

noThrust (the initial costume). Then broadcast a message

called liftoff that tells our program it is ready to start.

Writing the Lander Rockets & Gravity Scripts

The liftoff message sent by clicking the green flag

is received by a script that controls the lander's

thrust gravity and ability to crash. The important

part of this script is the control block called for-

ever. This is the recursion (looping) part of the

script that checks conditions to see if thrust

(rockets) are being applied, the lander is falling

back to earth with gravity or whether it has

crashed. After the forever block the loop starts by

checking to see if the lander is touching the edge

of the screen. If the lander is on the edge of the

screen it bounces it off the edge and back into

the sky. The script then checks to see if the lan-

der's fuel variable is greater than zero. If it is, it

then checks to see if the up arrow key is pressed.

If this is true it increases the lander's Yspeed vari-

able slightly and reduces its fuel variable slightly

thus, making the lander travel up with ever-

increasing speed as long as it has fuel. If the up

arrow key is not pressed (else), it decreases its

speed slightly each time through the loop. The

same thing is done with right and left arrow keys

if these are pressed thrust is applied and the

Xspeed increases or decreases so the lander can

move side to side and fuel is also decreased. A

condition is also set so that if fuel is zero (else),

Yspeed is decreased causing the lander to always

fall back to the moon once the lander's Yspeed

variable goes below 0.

At the bottom of this if statement is a motion

block that changes X and Y values of the lander

for the amount of Xspeed and Yspeed variables

that was set in the if statements above. This is the part of the program that actually moves the

lander on the screen. The important part here is the Yspeed variable. If the Yspeed variable is

a number above zero then the lander will travel up. If the Yspeed variable is a number below

zero (negative value) then the lander is being pulled back to the moon by gravity at an ever-

increasing speed (-0.01 each time through the loop). By controlling the speed at which the lan-

der fall to the moon, allows you to landed safely on the moon. What you need to do then is

have a controlled crash.

The next part of the loop determines if the lander is tak-

ing off, has landed safely, or has crashed. The if touch-

ing starting pad sensing block sets the initial condi-

tions for the lander if it is on the starting pad. The next if

statement determines if the lander has landed on the

landing pad safely. If the lander is touching the Land-

ing Pad and if it's Yspeed variable when it hit the pad

is not less than -.7 it will switch to the costume called

Landed and say you won stopping all scripts. In this

case -.7 is the maximum speed the lander is allowed to

fall to the pad without being destroyed.

The next if touching landing pad sensing block state-

ment checks to see if the lander has crashed. If the lan-

der's Yspeed variable is less than -.7 (meaning the lan-

der is traveling too fast when it hit the pad) it creates a

broadcast called crashed and stops all the scripts.

The next if statement checks to see if the Yposition of

the lander is less than -96. This means the lander did

not hit either of the pads and has fallen below its starting

position on the moon. When this happens a broadcast of

crashed is also sent and all scripts are stopped.

As with all types of recursion this is the bottom of the

loop and the lander will continually check through this

loop to see which conditions are true and run the pieces

of the program that are true at any given point in time.

This is how recursion works and allows the program to make decisions and have things happen

(e.g.: having the lander fall to earth) even when a person is not controlling (piloting) the lander.

Writing the Crashing Script

The last script attached to the lander is the crashed script. When the recursive lander script

sends out a crashed message either because the lander fell too quickly onto the landing pad or

hit the ground this script receives the crashed message. It

starts by setting the Fuel, Xspeed and Yspeed variables to

zero as the lander has now crashed. It then switches the lan-

der's costume to a crashed costume and says crashed for 2

seconds on the screen ending the simulation.

 To restart the lander simply click on the green flag

at the top and all the conditions will be set so the lander can

launch again.

Complete Script Listing

Complete Lander Script Listing

