
How to Build a Simple Pac-Man Game

For today's program, we are going to build a simple Pac-Man game. Pac-Man was one of the very first arcade

games developed around 1980. For our version of Pac-Man we are going to focus on the following programming

and problem solving techniques:

a. Using Scratch to develop computer objects (also known as Object

Oriented Programming classes) that will interact with each other in the

game. We will only develop five sprites with scripts for this program (7

in total for the game) but will be using copies of the sprites to make a

complete fully interactive video game (inheritance principle). Object

Oriented Programming is a complex topic and this program will not use

design patterns which are a hallmark of OOP. Your next project, the

Marble Roll Game, will start to explore this area however.

b. Developing simple animation of characters in the game. Animation

code (blocks) will be kept separate from functionality code (blocks) so

that sprites can be reused with simple changes to the costumes and

minor changes to some variables. This is how computer languages and

scripts that are fully object oriented (such as Action Script 3 for Flash

or Java) work.

This lesson is designed for intermediate to advanced users of Scratch who have had some experience in working

with the software and developing Scratch applications. Basic concepts such as how to create new sprites, where to

write scripts, etc. will not be reviewed. The software in this series of lessons only covers creating a single level for

this version of Pac-Man, however, the software has been written so that multiple levels are easy to add with simple

changes to variables. We will discuss how to do this briefly at the end of the lesson.

Getting Started

To get started creating our Pac-

Man program, we are going to

build a total of seven sprites. Start

by creating a sprite named Pac-

Man with only a single costume.

Then create a sprite called Horizontal to be a horizontal bar and Vertical which will be a vertical bar. The sprites

will be used to build the maze for Pac-Man and should both be the same color. Next we will create a sprite called

Point Pill that Pac-Man will eat as he goes through the maze. We will then create a sprite called Ghost 1 with a

single costume. This ghost will be Pac-Man's enemy and will be copied to make further ghosts later in the game.

Lastly, we will create a sprite called PowerUp in any color that is different from the Point Pill sprite. When Pac-

Man eats a PowerUp, he will have the ability to eat the ghosts for about 10 seconds and score 100 points for every

ghost he eats. Our last sprite will be called GameOver and will display a game over message on screen once three

Pac-Man characters have been eaten by the ghosts and the game is finished.

Next we will create a total of eight variables for our game. Our first

variable will be called Chase Pac-Man. This variable will be used to

determine if Pac-Man can eat the ghost or if the ghost can eat Pac-Man.

Our next variable will be called Direction. The Direction variable will

be used to randomly determine which directions the ghosts travel on the

screen (up, down, left, or right). Each ghost needs to have its own direc-

tion variable. In our example we will create a total of four ghosts. Thus

Direction Ghost 2, Direction Ghost 3, and Direction Ghost 4 are used

so that all ghosts can travel separate directions from each other. The

next variable we will create is called Ghost Speed. Ghost speed will be

used to determine how fast the ghost will travel and can be increased

with each level of the game to make the game more challenging. Our

next variable will be called Lives. Lives will be used by Pac-Man to

determine when the game is over once he has been eaten three times by the ghosts. Our last variable is called score

and will be checked so that it appears on the screen. This is used to keep track of the score in the game. With our

initial sprites and variables created let's turn to making our first character the Pac-Man.

PacMan Set-up

Let's start by setting our initial condition for Pac-Man. The first

thing we need to decide is how our character will move on the

screen. To simplify the animation of Pac-Man the first thing I'm

going to do is select the can rotate button to control his direc-

tion on the screen. This gives us the ability to easily allow Pac-

Man to turn and move in four directions. The disadvantage to this selection is that

Pac-Man's character will appear upside down when he is going left on the screen

as selecting this flips the character in the opposite direction. To get around this we

will use some creative programming of our costumes when Pac-Man is facing this

direction. This will be explained later in the directions.

Next we will create a total of seven different costumes. One of the costumes must

have Pac-Man's mouth closed as this will be the default costume. The next three

costumes will show his mouth in various states of being open. By flipping through

these costumes we will add animation to Pac-Man and make him appear to eat. For

costumes numbers 5 to 7 we will flip him upside down, again, with his mouth be-

ing open in various states. When our default costume is combined with these up-

side down costumes and Pac-Man is facing to the left, he will be rotated around

(rather than being upside down) and appear to be eating while going in the left

direction. This will be further explained when we look at the animation blocks.

Feel free to add more or less costumes to your Pac-Man, however, you will need to

adjust the number of blocks when we get to the animation scripts.

PacMan Main Script

The main Pac-Man script is used to set Pac-Man up

in his initial location and allow him to move around

the screen. It also determines what happens when

Pac-Man hits the wall the maze or the edge of the

screen. When the green arrow is clicked the varia-

ble Lives are set to zero (meaning he now has three

lives) he is rotated to 90° (his) starting direction,

moved to his initial spot on the screen and is

shown. The Pac-Man script then enters a forever

loop that will check to see if keys are being pressed

that would allow him to move.

First, it checks to see if the right arrow key is be-

ing pressed. If it is, it rotates Pac-Man around fac-

ing the right direction (90°) and moves him 3 steps

to the right. If however, he bumps into a maze (or

he is touching a maze color) it pushes him away

from the maze wall in the opposite direction so we

cannot move through the maze. The rest of the if

statements in this loop do similar things checking

to see if Pac-Man should move to the left, up, or

down and moving in that direction unless he hits

the maze wall in which case he is stopped. At the

bottom of the loop if he is touching the edge he

simply bounces back onto the screen. By control-

ling his movement through the use of a forever

block, the Pac-Man character is much more respon-

sive to key presses then he would be through the

use of a control block to move him.

Pacman Animation Script

Animation for the Pac-Man game is kept separate from the control

loop. This serves two purposes. First, it makes our sprites more reus-

able. Sprites (objects) can be copied and reused and simple changes

can now be made to costumes and animations with out changing the

interactivity of the sprite. This allows us to create multiple characters

quickly and easily. Second, the animation can be made smoother as it

does not need to wait for its “turn” in the sprites control loop. When

the green flag is clicked a forever loop controlling and the animation

is entered. The first part of the loop switches between our costumes 1

to 4 with a brief pause in between creating the illusion that the Pac-

Man's mouth is opening and closing. At the bottom of the loop it

checks to see if the direction of the Pac-Man is greater than -90 if it

isn't then it switches to the second set of costumes (the upside down

Pac-Man) and loops through these (repeats) until it is greater than -

90. Let's look at how this works a bit further using a little bit of

math. Scratch sees the direction of sprites as being between positive

180° and -180°. The top of a sprite is 0° while the bottom of the

sprite is 180°. A character rotated to the right is a positive rotation

will character rotated left is in negative rotation. Earlier in the pro-

gram we allowed Pac-Man to rotate as he's moved around the screen with the arrow keys. When the up arrow key

is pressed Pac-Man's rotation is set to 0°. When the right arrow key is pressed his rotation is set to 90° and when

the down arrow key is pressed its rotation is set to 180°. When the left arrow key is pressed its rotation is set to

-90°. This results in the character being turned upside down. However in this loop when the character set to 90° the

upside down costumes are animated then rotated around so they now face in the correct direction and the animation

(for the most part) looks correct. There can be a slight delay between the control loop and the animation loop caus-

ing the animation to look upside down for a brief second. This is difficult to program around in the Scratch envi-

ronment.

Pacman Eaten (by the Ghost) Script

The Pac-Man sprite also contains a script that decides what hap-

pens when the Pac-Man is touched by a ghost when the power up

is not active. The ghosts send a broadcast to the Pac-Man if they

touch him when he is not powered up. The Pac-Man receives this

message called a “Scare PacMan” in this script. The Pac-Man is

hidden and plays a sound to show that he has been eaten by the

ghost. If his Lives are greater or equal to three (meaning he has

been killed three times already) it sends a broadcast called game

over which will end the game (will look at this later). If this is not

the case and more lives are available it will wait 2 seconds change

the Lives by one (meaning takes one of his lives away) switches

him to the start costume for the program, places him back in the starting position, points him in the correct direc-

tion and then shows him on the screen and continues the game.

Point Pill Script

The point pill script is used to have pills the Pac-Man can eat and score

points on as he goes around the screen. When the green flag is clicked the

pill is shown on the screen. It then enters a forever loop which checks to

see if the pill is touching the Pac-Man. If it is, it plays a sound, changes

the score by one (adding point to the Pac-Man score) hides the pill and then

stops all scripts. The stopping of the scripts speeds up other animations in

the software. If you're creating multilevel game you may just wish to hide

the point pill and re-show it at a new level. This will be discussed further at

the end of this tutorial.

Power Up Script

The power up script allows the Pac-Man to eat the ghosts for a limited

amount of time once he has eaten the power up pill. When the green flag is

clicked the power up pill is shown on the screen and enters a forever loop.

It checks to see if the pill is touching the Pac-Man. If it is, it broadcasts a

power up message (that is received by the ghosts) hides the pill that has

been eaten by the Pac-Man and stops the pills script speeding up the soft-

ware. Again if you're creating a multilevel game you may just wish to hide

the PowerUp pill and re-show it at a new level. This will be discussed fur-

ther at the end of this tutorial.

Game Over Script

The game over script is simply a way to indicate to the user that they have

lost the game. Create a sprite that simply says “Game Over”. When the

green flag is clicked hide this sprite. In the Pac-Man sprite we had it

broadcast a message called “Game Over” when it lost more than three

lives. That message is received by the Game Over sprite. When it receives

a game over it brings the game over sprite to the front, shows it, and then

stops all scripts in the program. This ends the game and the user must re-

click the green flag in order to start the game again.

Main Ghost Script

The main group ghost script controls the movement and interactivity of

the ghosts in the program.

When the green flag is clicked a variable called Chase Pac-Man is set to

1 (meaning the ghosts are able to eat Pac-Man) and the ghost speed varia-

ble is set to 2. The ghost speed variable determines how quickly the ghosts

move and can be increased (such as in different levels) to make the game

more difficult. The ghost is then set to its initial position point in the cor-

rect direction and shown on the screen. A random number between one

and four is then selected and given to the direction variable. This random

number will determine the direction the ghost travels until it hits a wall

and as such, each ghost will need it own direction variable (which we set

up earlier) so they can operate in different directions from each other.

The program then enters a forever loop and checks to see which direction

the ghost was set in. If the direction variable is 1 the ghost goes right, 2

the ghost goes left, 3 the ghost goes up, or 4 the ghost goes down. This is

controlled by a bunch of if statements that checks to see what the direc-

tion variable is set to points the ghost in that direction and then changes

its X or Y direction by the ghost speed variable which determines the

speed of the ghost. If the ghost hits either the edge of the stage or part of

the wall it is told to bounce away from the object and then pick a new

random number. When it goes back up to the loop it will

have a new direction which it will follow until it again

hits the maze or the edge. At the bottom of the main loop

there is an if statement that checks to see if it's touching

the Pac-Man and it's Chase Pac-Man variable is not = 0

(meaning the Pac-Man is not powered up to eat the

ghosts). If this is the case the ghost broadcasts a “Scare

PacMan” message which is received by the Pac-Man

character costing the Pac-Man a life in the game.

Ghost Costumes & Rotation

We will use the same rotation and costume tricks for the ghosts as we did for

the Pac-Man to aid in animation and travel direction. Start by creating two ghost

costumes, one that is upright and one that is upside down. Then selected the can

rotate button up at the top of the screen. Now we'll create a costume script for

the ghost. When the green flag is

clicked enter forever loop that

will switch to costume number

one until the direction of the

ghost is greater than -90°. When this happens the upside down

costume (2) will be selected, rotated around to be the correct direc-

tion, and repeat like this until the direction of the ghost is greater

than 90°.

Ghost Power Up Script

The ghosts power up script allows the Pac-Man to eat the

ghost when this script is running. When the Pac-Man eats

a Power Up Pill it sends a message called PowerUP that is

received by the ghost. The ghost sets the Chase Pac-Man

to zero (meaning that the ghost can't eat Pac-Man), sets the

Ghost Speed to 4 (meaning the ghost runs a little faster)

and set the timer in the game to zero. The ghost then en-

ters a repeat loop that continues until the timer is greater

than 10, meaning 10 seconds have gone by. The ghost

then has a color change meaning it flashes while the Pac-

Man is able to eat it and checks to see if the Pac-Man is

touching the ghost. If it is, it hides the ghost plays a

sound to show it's been eaten, adds 100 points the Pac-

Man score points it in the starting direction and moves

the ghost back to its starting base in again. At the end of

10 seconds the repeat loop ends, sets the Chase Pac-Man

back to one (mean the ghost can now eat the Pac-Man)

sets the ghost speed back to normal, stops the flashing of the ghost and make sure it shows it on the screen

again. If the Pac-Man had eaten the ghost it will reappear at this point, if it had not, it will simply stop flashing

and return to its regular color.

Finishing the Games First Level

To finish the first level on the game start by using the horizontal and vertical line sprites to create a maze. Simply

make as many copies of these pieces as you need in order to create a maze. Have your Pac-Man run through the

completed maze before you add ghosts point pills and power ups. Make sure the Pac-Man fits in all the tunnels and

corners that you create. You can also draw out a maze on the main stage making sure that the colors that your

ghosts and Pac-Man are looking for are correct so they can bounce off the maze.

Once you have your maze set up, you can duplicate as many point pills and power ups as you wish to fill up your

maze. If you plan on building a multilevel game you may wish to place a variable that will allow you to show and

hide the point pills and power ups for each level. These can then be turned on and off as your Pac-Man progresses

through levels.

Lastly, you want to copy your ghost three more times and give it a unique name. For each of these ghosts you'll

then need to replace the “direction” variable in the main script with a unique one for each ghost. We created these

at the start and call them direction ghost 2, etc. This will allow all the ghosts to move independently in different

directions. You should then change the costumes of each ghost giving it a unique appearance. The nice thing about

building your sprites so they are reusable, is you are now able to create four unique enemies with very little extra

work. Now try your game out !!

Hints on Adding Multiple Levels

You should be able to add multiple levels to this game with minimal extra work. There are several things you will

need to do with the current program to make this happen. First, you'll need to determine a way to tell when all the

pills have been eaten and then reset them on the screen to their original positions. This can be done by creating a

variable to keep track of this for each level in the game and then resetting it for each new level. Second, the ghost

speed at each level can be increased making the game more difficult as the levels progress. Third, bonuses like

fruit and other items could be added to make gameplay more interesting. I look forward to seeing which items you

can add to make this game more interesting and more challenging through multiple levels !!

PacMan Game Complete Sprite & Scripts List

Set-up Sprites & Vaiables

PacMan Costumes & SetUp

PacMan Main Script PacMan Eaten Script

PacMan Animation Script

Pont Pill Script

PowerUp Script Game Over Script

Costumes

Ghost PowerUp Script

Ghost Main Script

Ghost Costume Script

