
“But when are we going to use this?”

, GREENFOOT, MATH & STEROIDS

MISSION: Make a Game

http://scratch.mit.edu/projects/SonicPopsDad/245563

•Something the
students might
already enjoy
•Involves motion,
acceleration,
momentum
•Involves
projectiles

CS MISSION: Involve Programming

Scratch Project: Asteroids
Phase Scratch Math Asteroids

1. Get Moving Motion, Looks, Sound,
Control, Sensing

angle of ship turn, steps
to move ship = speed

rocket turn, thrust,
movement

2. Off Screen Motion, Control,
Operators

x/y coordinates
of ship position

screen wrap
around

3. Collisions
Motion, Looks, Sound,

Control, Sensing,
Operators

variables, conditional
logic, event handling

ship crashing into
asteroids, asteroids
crashing into ship

4. Shooting
Motion, Looks, Sound,

Control, Sensing,
Operators

message passing,
relational expressions

ship shooting bullet,
asteroids getting hit by

bullet

5. Momentum Motion, Looks, Control,
Sensing, Operators

trigonometric functions,
velocity, acceleration

gliding based on
momentum and thrust

acceleration

Scratch Phase 1: Get Moving

http://scratch.mit.edu/projects/dang/1400099

Scratch Phase 2: Off Screen

http://scratch.mit.edu/projects/dang/1400601

Scratch Phase 3: Collisions

http://scratch.mit.edu/projects/dang/1400765

Scratch Phase 3: Collisions

http://scratch.mit.edu/projects/dang/1400765

move randomly

wrap
around
screen

•Asteroids are not yet exploding on impact
•They provide something for the rocket to hit

Scratch Phase 3: Collisions

http://scratch.mit.edu/projects/dang/1400765

•gameOver message is broadcast from rocket
when it collides with an asteroid

not game
over yet

flicker
randomly

Scratch Phase 4: Shooting

http://scratch.mit.edu/projects/dang/1402543

•shootBullet01 message is broadcast
from rocket when space key is pressed

Scratch Phase 4: Shooting

http://scratch.mit.edu/
projects/dang/1402543

don’t show up until
there’s shooting

shoot from
rocket

shoot forward
from rocket and

wrap around
screen

•This version only
deals with shooting one
bullet at a time
•Students can add
bullet02, bullet03,
and scripting

Scratch Phase 4: Shooting

http://scratch.mit.edu/projects/dang/1402543

•Listening for
asteroid01Explodes

big
1

big
2

big
3

small 1

small 2

small 3

small 4

small 5

small 6

•Listening for
asteroid01Explodes

•Listening for
asteroid02Explodes

•Listening for
asteroid02Explodes

•Listening for
asteroid03Explodes

•Listening for
asteroid03Explodes

Scratch Phase 4: Shooting

http://scratch.mit.edu/projects/dang/1402543

appear near where the bigger
asteroid exploded traveling in

roughly same direction

if hit by rocket or bullet,
explode and don’t worry

about smaller chunks

small
1

wrap
around
screen

•Each smaller asteroid
belongs to a larger asteroid
• Each smaller asteroid sprite
has the same script except for
responding to asteroid01,
asteroid02, or
asteroid03

Scratch Phase 5: Momentum

http://scratch.mit.edu/projects/dang/1423848

wrap
around
screen

•Major switch in moving the ship
from stop and go to maintaining
directional momentum
• Adjusted mathDirection from
Scratch built in direction variable

Momentum - Part 1

http://scratch.mit.edu/projects/dang/1423848

•THING 1 - We need to
know how big or small of
change in both the x and
y direction to apply as you
zoom around the screen
with your rocket turned on

•In order to keep your rocket ship from
the Asteroids game flying around in the
right direction and maintaining momentum,
there are two things you'll need to do get
that working

Momentum - Part 2

•THING 2 - We need
to know how big or small
of a change in momentum.
If you liken this triangle of
rocket tilt to a circle, you
can imagine your rocket is
the radius of the circle and
for the purposes of telling
Scratch how much or little
to move us along the x
axis and y axis, we're interested in getting the x and y component of
the triangle formed at every position around the circle as the rocket is
rotating as illustrated in the figure here

Momentum - Part 3
•TRIG FUNCTIONS -

Thankfully there are handy
trigonometric functions
available to us that give us
exactly this, the x and y
component of a triangle in
this way. You may have
already hit this in school,
known as the formula for a
circle, where, placing a
circle with origin at x=0,
y=0, all points along the
circle can be described as the radius squared is equal to the sum of the x
positon squared plus the y position squared, or r^2 = x^2 + y^2. An easy
way to think about this is drawing a circle with a pencil, a piece of string,
and a pin, it would look like the figure above

Momentum - Part 4

•TRIG & SCRATCH -
The relationship of
functions we'll use
and which Scratch
blocks you'll need
are illustrated here,
note that we won't be
needing tangent (tan)
but it’s here for
completeness, almost any discussion including sine and cosine
will also mention tangent.

Momentum - Part 5
•FROM ZERO TO ONE AND BACK
AGAIN - Rather than draw lots of different
triangles representing you spinning your
rocket ship around, here are the values these
functions return given the angle you put in, the
table below shows values for a few different
angles. For our purposes, you'll be using the
built in direction variable in scratch for
your angle.

Momentum - Part 6
•BUT IT DOESN’T WORK??? - If you're following along so far
and have tried all this, you'll notice it doesn't work correctly, the ship flies
off in directions you don't expect. Well, here the reason: the coordinate
system for direction used by scratch is not the same as the coordinate
system we typically see in math examples, namely, most math examples
assume angle=0 points to the right and Scratch assumes angle=0 points

up. Neither is right
or wrong, you can
spin your coordinate
system any way
you'd like. And
that's exactly what
we'll do as shown in
the diagram here.

Momentum - Part 7
•MOVE -

repeatedly move
ship around based
on momentum in
the x and y
direction

Greenfoot Project: Asteroids

Phase Greenfoot Math Asteroids

1. Get Moving World, Actor, act() / run /
reset framework

angle of ship turn, steps
to move ship = speed

rocket turn, thrust,
movement

2. Off Screen to be completed x/y coordinates
of ship position

screen wrap
around

3. Collisions to be completed variables, conditional
logic, event handling

ship crashing into
asteroids, asteroids
crashing into ship

4. Shooting to be completed message passing,
relational expressions

ship shooting bullet,
asteroids getting hit by

bullet

5. Momentum to be completed trigonometric functions,
velocity, acceleration

gliding based on
momentum and thrust

acceleration

Greenfoot Phase 1: Get Moving

Scratch Movement (review)

Greenfoot Movement - Part 1

Greenfoot
Coordinate

System

Mathematics
Coordinate

System

90°75°

60°
45°

30°

15°

180°

165°

150°

135°
120°

105°

270°

195° 345°

210° 330°

225°
240°

255°

315°
300°

285°

0° and 360°

subtract Greenfoot
direction from
360 to get...

270°
285°

300°
315°

330°
345°

180°

195°

210°

225°
240°

255°

90°

165° 15°

150° 30°

135°
120°

105°

45°
60°

75°

0° and
360°

Actor.
getRotation()

(360 - Actor.
getRotation())

Greenfoot Movement - Part 1

Greenfoot Movement - Part 1

0

180

-180

-240
240

or

600

400

0

•WHAT, NO move()??? - There is no “move
forward in the current direction” method in the
Actor class, so we’ll need to make our own
•Thankfully, we already have what we need to do
this, which is:

•the current direction
•int getRotation()

•a way to get the x and y position
•int getX()
•int getY()

•a way to set the x and y position
•setLocation (int x, int y)

•Math functions for x and y portion of a vector
•Math.cos(double angle)
•Math.sin(double angle)

Greenfoot Movement - Part 1

0

180

-180

-240
240

Scratch - Reinventing move

0

180

-180

-240
240

•If you had no block in Scratch, you
could do the same thing, because in Scratch you also
have:

•the current direction
•

•a way to get the x and y position
•
•

•a way to set the x and y position
•

•Math functions for x and y portion of a vector
•
•

Scratch - Reinventing move
•Math functions for x and y portion of
a vector tell us how much to change x
and y by if we’re not using

•
•

Scratch - Reinventing move
 angle = 30
cos(30) = 0.866
sin(30) = 0.5

 angle = 105
cos(30) = -0.2588
sin(30) = 0.9659

 angle = 225
cos(30) = -0.7071
sin(30) = -0.7071

 angle = 300
cos(30) = 0.5
sin(30) = -0.866

Scratch - Reinventing move

0

180

-180

-240
240

•Since cos() and sin()
return a value
beteween 0 and 1,
multiply the result by
the steps you would
have used in the move
block to get the x and
y component

Greenfoot Phase 1: Get Moving

java.lang.Math

sin

public static double sin(double a)

Returns the trigonometric sine of an angle.

Parameters:
a - an angle, in radians.
Returns:
the sine of the argument.

cos

public static double cos(double a)

Returns the trigonometric cosine of an angle.

Parameters:
a - an angle, in radians.
Returns:
the cosine of the argument.

public final class Math
extends Object
The class Math contains methods for performing basic numeric operations
such as the elementary exponential, logarithm, square root, and
trigonometric functions.

Greenfoot - Inventing move()

•Try compiling this, does everything come out OK?

TAKE
1

Greenfoot - Inventing move()

FAIL!

Greenfoot - Inventing move()

•It now compiles but... does it look right?

TAKE
2

Greenfoot - Inventing move()

FAIL!
???

???

???
sin

public static double sin(double a)

Returns the trigonometric sine of an angle.

Parameters:
a - an angle, in radians.
Returns:
the sine of the argument.

cos

public static double cos(double a)

Returns the trigonometric cosine of an angle.

Parameters:
a - an angle, in radians.
Returns:
the cosine of the argument.

Greenfoot - Inventing move()

•Does our ship behave now?

TAKE 3

Greenfoot - Inventing move()

YEAH!
YES!

COOL!

NICE!
•We now have a working
moveSteps(int steps)
for our Rocket Actor class
in Greenfoot
•Which behaves like this

•Which does the same
thing as this

Greenfoot - change costumes
•Since we’re moving
correctly now, let’s add
image changes
•use Actor.setImage
(String)

Greenfoot - make noises

•Since we’re moving correctly now, let’s play a
sound when we moveSteps(int)
•Create a new sound and use
GreenfootSound.play() to play it

Greenfoot - GreenfootSound
greenfoot
Class GreenfootSound
java.lang.Object
 greenfoot.GreenfootSound

public class GreenfootSound
extends java.lang.Object
Represents audio that can be played in Greenfoot. A GreenfootSound loads the audio from a file. The sound cannot be played several times simultaneously, but can be played
several times sequentially. Most files of the following formats are supported: AIFF, AU, WAV, MP3 and MIDI.

Constructor Summary
GreenfootSound(java.lang.String filename)
 Creates a new sound from the given file.

Method Summary

boolean isPlaying()
 True if the sound is currently playing.

void pause()
 Pauses the current sound if it is currently playing.

void play()
 Start playing this sound.

void playLoop()
 Play this sound repeatedly in a loop.

void stop()
 Stop playing this sound if it is currently playing.

java.lang.String toString()
 Returns a string representation of this sound containing the name of the file and whether it is currently playing or not.

Greenfoot - make noises

Greenfoot Phase 2: Off Screen

Greenfoot Phase 2: Off Screen

600

400

0

Scratch - how far is too far?

0

180

-180

-240
240

•If the Scratch screen boundary is 240 left and right,
can x be > 240 or < -240?
•If the Scratch screen boundary is 180 up and down,
can y be > 180 or < -180?

Greenfoot - how far is too far?
•If the Greenfoot screen boundary is set to 0 to 600
left and right, can x be > 600 or < 0?
•If the Greenfoot screen boundary is set to 0 to 400
up and down, can y be > 400 or < 0?

600

400

0

Greenfoot Phase 2: Off Screen

600

400

0

Greenfoot Phase 2: Off Screen

•This can be tricky to get right and
not have things “stuck” on a side of
the screen or the corner
•Greenfoot 2.0 also includes a
“border-less” option for Worlds:
public abstract class World
extends java.lang.Object
World is the world that Actors live in. It is a two-dimensional grid of cells.

All Actor are associated with a World and can get access to the world object. The size of cells can be specified
at world creation time, and is constant after creation. Simple scenarios may use large cells that entirely contain
the representations of objects in a single cell. More elaborate scenarios may use smaller cells (down to single
pixel size) to achieve fine-grained placement and smoother animation.

The world background can be decorated with drawings or images.

Constructor Summary
World(int worldWidth, int worldHeight, int cellSize)
 Construct a new world.
World(int worldWidth, int worldHeight, int cellSize, boolean bounded)
 Construct a new world.

Greenfoot Phase 3: Collisions

•To provide something to collide with,
our Asteroid Actors will be random

•The Greenfoot version of will use the
java.util.Random.nextInt(int max) method
•

java.util
Class Random
java.lang.Object
 java.util.Random

public class Random extends Object

An instance of this class is used to generate a stream of pseudorandom
numbers. The class uses a 48-bit seed, which is modified using a linear
congruential formula.

java.util.Random

int nextInt(int n)
 Returns a pseudorandom, uniformly distributed int value between 0
(inclusive) and the specified value (exclusive), drawn from this random
number generator's sequence.

Greenfoot Phase 3: Collisions

greenfoot
Class Actor
java.lang.Object
 greenfoot.Actor
public abstract class Actor
extends java.lang.Object
An Actor is an object that exists in the Greenfoot world.

Every Actor has a location in the world, and an appearance

(that is: an icon).

Method Summary
java.util.List getIntersectingObjects(java.lang.Class cls)
 Return all the objects that intersect this object.
java.util.List getNeighbours(int distance, boolean diagonal, java.lang.Class cls)
 Return the neighbours to this object within a given distance.
java.util.List getObjectsAtOffset(int dx, int dy, java.lang.Class cls)
 Return all objects that intersect the center of the given location (relative to this object's location).
java.util.List getObjectsInRange(int radius, java.lang.Class cls)
 Return all objects within range 'radius' around this object.
Actor getOneIntersectingObject(java.lang.Class cls)
 Return an object that intersects this object.
Actor getOneObjectAtOffset(int dx, int dy, java.lang.Class cls)
 Return one object that is located at the specified cell (relative to this objects location).

Actor - Collision Detection

Greenfoot Phase 3: Collisions

Greenfoot Phase 3: Collisions

array[] of explosion images

images[0]
images[1]
images[2]
images[3]
images[4]
images[5]

images[6]

images[7]

Greenfoot Phase 3: Collisions

•Resulting order
of images[]
elements set by
act() method:

0 1 2 3 4 5 6 7 6 5 4 3 2 1 0

Greenfoot Phase 3: Collisions

•Resulting order
of images[]
elements set by
act() method:

0 1 2 3 4 5 6 7 6 5 4 3 2 1 0

Scratch Phase 4: Shooting

Scratch Phase 5: Momentum

TO BE COMPLETED “REAL SOON
NOW”(C)(R)(Pat. Pending)

