 GREENFOOT, MATH& ASTERO

.| ' - D ;
. . -] @ y .-, Y . ’ :
. e BRE STy, MR iy Dot > ' = ; vy L : 3 V
A .' v ‘- ..
' : . E 3 : 1 H
i 1 1 .

MISSION: Make a Game

® Something the
students might
already enjoy

* [nvolves motion,
acceleration,
momentum

® Involves
projectiles

scratch.mit.edu/projects /SonicPopsDad /245563

CS MISSION: Involve Programming

Simplest tool Simpler tool Less simple Less simple Less simple Complex tool No/Any tool
Ageg 5-15 Ageg 8-22 Ages 12-22 Ages 13-25 Ages 15-25 Ages 15-25 Ages 16+
*Drag and dro Drag and dro *Interactive *Type,compile, Type, compile, Type, compile, Type, compile,
code blocks P codegblocks P interpreter code run, debug rur)rl debug rur)rl debug rur){ debug
+2D graphics -3D graphics typing +2D gaming *No default ‘No default *No default
frameworks frameworks *Media framework™ raphics ?rap ics raphics
interaction interaction computation interaction via ramework amework ramework
helper classes 5 Java classes environment environment environment

4 N\ N

TOOLS FEATURES

Media
Computation.org ((
]| A g 8 g S
Alice - drjevel Blue) NetBeans Javva
(aec) drEvs - J L P
N sequence « All Scratch « All vious e All previous Alice ° Simplest Java * Complex IDE
« Iteration concepts plus.. concgps r,fexc u mg concgpts plus... IDE Mult:) ” Pr;g;agrgr‘r:rgr\gmon
21 - Conditional Logic pProceduresand USerinteriace design . g .. classes “All Java ogrammin Java
= °Varri'at':lle: 9'C " Functions - Manipulation of enca sulate 20 Programming angua es agarlable Grgeﬁrf?gt BlueJ
S - Parameter audio, images, video q 3 Lan uage Java u |.Yp Groovy, ggv ro?r mgm:
—+ - DataStructures Passing *Retumn through media g lation concepts Features i
S (dynamic lists) Values computatlon helper - All Java Available JavaScnpt etc.) - All Java _
* Events Handling - Recursion ﬁ,:ﬁ?:éom?.fmion o Programmrng - Tooling covers E;%gr::‘?g'e%tures
=4 - Parallel - Defining Classes gl mobile and Available
— Execution of 6bject% Features Available embedded,
®] - Synchronizati AIl Java | enterprise, all * Tool /
\fJ ynchronization - Inheritance Programming avenues environment
= Nﬁr?r%%?? * Text Input ksg uage Features agnostic
* Boolean Logic - Interpreted mode is
* Dynamic great step from drag
Interaction and drop code
- User Interface blocks 6‘° errors
Design o?f;;e compile
* Publish projects ebug
as Java applets (all errors possible)

on scratch.mit.edu

Scratch Project: Asteroids

1. Get Moving

\
QA .

Scratch

Motion, Looks, Sound,
Control, Sensing

angle of ship turn, steps
to move ship = speed

Asteroids

rocket turn, thrust,
movement

2. Off Screen

Motion, Control,
Operators

x/y coordinates
of ship position

screen wrap
around

3. Collisions

Motion, Looks, Sound,
Control, Sensing,

variables, conditional
logic, event handling

ship crashing into
asteroids, asteroids

5. Momentum

Motion, Looks, Control,
Sensing, Operators

trigonometric functions,
velocity, acceleration

Operators crashing into ship
. Motion, Looks, S.ound, message passing, ship .shootin.g bul.let,
4, ShOOtlng Control, Sensing, relational expressions asteroids getting hit by
Operators bullet
gliding based on

momentum and thrust
acceleration

Scratch Phase 1: Get Moving

s Y costumes s
JEEEE paint J import J camera

g
rocket

when Up arrow | key pressed

move steps

when down arrow | key pressed

move BU) steps

when left arrow | key pressed

turn b B degrees

when right arrow | key pressed

turn &) degrees

when clicked

forever

if key Up arrow |pressed?

play sound Thrust

switch to costume rocketWithThrust

switch to costume rocket

— ' 1400099

Scratch Phase 2: Off Screen

http://scratch.mit.edu/projects/dang/1400601

Scratch Phase 3: Collisions

gameOver |
switch to costume explosion |

switch to costume explosion-blig

http://scratch.mit.edu/projects/danqg/ 1400765

Scratch Phase 3: Collisions

o x: 'pick random SXT) to V" y: 'pick random BTI) to 7\
oint in direction 'pick random to T

-/ /scratch.mit.edu/projects/danq/1400765

* Asteroids are not yet exploding on impact
* They provide something for the rocket to hit

Scratch Phase 3: Collisions

http://scratch.mit.edu/projects/dang/1400765

® gameOver message is broadcast from rocket
when it collides with an asteroid

Scratch Phase 4: Shooting

e turn & degrees

turn degrees.

|;I;y sound Laserl |

;;to X3 0 y: o

show

L —

Koy L0 IR pressed http://scratch.mit.edu/projects/dang/1402543
[;I;y sound Thrust |
;vﬁtch to costume rocketWithThrust |

o ® shootBullet01l message is broadcast

switch to costume rocket |

o~ oo < 2 from rocket when space key is pressed

set x to EX0

Scratch Phase 4: Shooting

SCripts s0unds
CEELE paint J import J camera

/ﬂ;
I when I receive shootBulletOl |

go to x: X position of rocket y: y position of rocket

point in direction dlrection |of rocket

show

e 20 http://scratch.mit.edu

move steps o
B O rojects/dang/1402543
if " x position < FZ0)

set x to m

[® This version only
-t x v €D deals with shooting one

4 y position <

e bullet at a time
¢ Students can add
jetytom

e bullet02, bullet03,
and scripting

asteroi...

asteroi...

big

big
3
http:

Scratch Phase 4: Shooting

if touching rocket |2 or touching bulletol |2

ﬁ:ﬁaadcast asterold01Explodes |

play sound Pop |until done
hide
Eﬁp script

-

if touching rocket |? or touching bullet0l |3

(BB serooitpiotes |
play sound PO_D] until done
hide

(stop script

if touching rocket |2 or touching bulletol |2

liﬁadcast asterold03Explodes |

play sound Pop |until done
hide

|;t_op script

=

scratch.mit.edu/projects/dang/1402543

asteroi...

asteroi...

small 2

asteroi...

small 3

asteroi...

small 4

small 5

asteroi...

small 6

® Listening for
asteroidOlExplodes

® Listening for
asteroidOlExplodes

e Listening for
asteroid02Explodes

e Listening for
asteroid02Explodes

® Listening for ‘
aster01d03Explodi$._
® Listening for
aster01d03Explodes

Scratch Phase 4: Shooting

°
S appear near where the bigger
go to x: X position |of asterold0l y: yposition |of asterold0l (IS"'el'Oid exploded 'ruveling in
point in direction | direction |of asterold01 + pick random @ to €5 . °
- roughly same direction

forever ® Each smaller asteroid

move steps

i x position < [FZ0) .
T belongs to a larger asteroid
rr— e Each smaller asteroid sprite

<ot = to €7D has the same script except for
oy oo on SRED responding to asteroid01,

fetv y to
P asteroidO02, or

st y to GTD W) asteroid03
R = ook 7 JoRY couenimg buteoL 17 'O _ if hit by rocket or bullet,

play sound Pop |until done

CET \ 2 explode and don’t worry
‘ S about smaller chunks

o ;

http://scratch.mit.edu/projects/dan 1402543

Scratch Phase 5: Momentum

o)
v

(e 3 sow iy rasesd

se_t mathDirection |to (m- * direction |

change momentumX |by = C0S |of mathDirection *

change momentumY |by ~ sin |of mathDirection *

se_t mathDIrection |to ,m- " direction |

set sinOfDirection |[to sin |of mathDirection

set cosOfDirection |to cos |of mathDirection

;& momentumx |to 0]

set momentumY |to [

set oldX | to ' x position
set oldY | to 'y position

set x to | x position + ‘momentumX

set y to ("y position + ‘momentumY

momentumX [}
momentumY []

® Major switch in moving the ship
from stop and go to maintaining
directional momentum

¢ Adjusted mathDirection from

Scratch built in direction variable
scratch.mit.edu i 1423848

Momentum - Part 1

dy = amount rocket thrust

of rocket componentsin @ In order to keep your rocket ship from
. . X and y direc- . . .

directior tions the Asteroids game flying around in the

p A}dx;rzr:'?;m @L right direction and maintaining momentum,
——- thrustinx ——>» ° 1
direction =~ there are two things you'll need to do get
that working
| momentumx Q 9
* THING 1 - We need to o ‘

oldy

know how big or small of frecer el

cosOfDirection

sinOfDirection [| PSRN

change in both the x and [resrac o
y direction to apply as you
zoom around the screen

with your rocket turned on

http://scratch.mit.edu/projects/dang/1423848

Momentum - Part 2

dy = amount
of rocket
thrustiny
direction

® THING 2 - We need

to know how big or small

. . dx = amount
of a change in momentum. >y X sin@) }t:fn::::(:tx
If you liken this triangle of angle of your direction

y,
rocket tilt to a circle, you o
can imagine your rocket is
the radius of the circle and
for the purposes of telling
Scratch how much or little

to move us along the x
axis and y axis, we're interested in getting the x and y component of

the triangle formed at every position around the circle as the rocket is
rotating as illustrated in the figure here

Momentum - Part 3

* TRIG FUNCTIONS -

Thankfully there are handy
trigonometric functions
available to us that give us
exactly this, the x and y
component of a triangle in
this way. You may have
already hit this in school,

known as the formula for a

dx = cos(8)
circle, where, placing a
circle with origin at x=0,

y=0, all points along the
circle can be described as the radius squared is equal to the sum of the x
positon squared plus the y position squared, or r*2 = x*2 + y*2. An easy
way to think about this is drawing a circle with a pencil, a piece of string,
and a pin, it would look like the figure above

Momentum - Part 4

[
Explanation for sine, co-
o TRIG & SCRATCH - sine and tangent
The relationship of
functions we'll use e e

and which Scratch
bIOCkS you " need _<

are illustrated here,

> CEEETD

note that we won't be L

needing tangent (tan) angle = 91— | /
cos ' of angle

but it’s here for B

completeness, almost any discussion including sine and cosine
will also mention tangent.

e FROM ZERO TO ONE AND BACK
AGAIN - Rather than draw lots of different

triangles representing you spinning your
rocket ship around, here are the values these
functions return given the angle you put in, the
table below shows values for a few different
angles. For our purposes, you'll be using the 165
built in direction variable in scratch for

your angle.

Momentum - Part 5

Trigonometric
Function
Explanation for sine, co-
sine and tangent

angle=0
0
15
30
45
60
75
90

135

150

180

195

210

225
240
255
270
285
300
315
330
345
360

105
120

cos(9)
1.0
0.9659
0.8660
0.7071
0.5
0.2588
0.0
-0.2588
-0.5
-0.7071
-0.8660
-0.9659
-1.0
-0.9659
-0.8660
-0.7071
-0.5
-0.2588
0.0
0.2588
0.5
0.7071
0.8660
0.9659
1.0

sin(9)
0.0
0.2588
0.5
0.7071
0.8660
0.9659
1.0
0.9659
0.8660
0.7071
0.5
0.2588
0.0
-0.2588
-0.5
-0.7071
-0.8660
-0.9659
-1.0
-0.9659
-0.8660
-0.7071
-0.5
-0.2588
0.0

tan(0)
0.0
0.2679
0.5773
1.0
1.7320
3.7320
infinity
-3.7320
-1.7320
-1.0
-0.5773
-0.2679
0.0
0.2679
0.5773
1.0
1.7320
3.7320
infinity
-3.7320
-1.7320
-1.0
-0.5773
-0.2679
0.0

Momentum - Part 6

o BUT IT DOESN’T WORK??? - if you're following along so far

and have tried all this, you'll notice it doesn't work correctly, the ship flies
off in directions you don't expect. Well, here the reason: the coordinate
system for direction used by scratch is not the same as the coordinate
system we typically see in math examples, namely, most math examples
assume angle=0 points to the right and Scratch assumes angle=0 points

Scratch subtract Scratch Mathematics 1 1 M
CIZTT) Coordinate — ™direction from > Coordinate up. N e"her IS rlght
System 90 to get... System

or wrong, you can
spin your coordinate
system any way
you'd like. And
that's exactly what
we'll do as shown in
the diagram here.

115'9Ou 75°

0180‘-. - o
175" 3ng 175
-180°

cosOfDirection |

mathDirection |

crashed |
momentumX |

momentumy |

sinOfDirection |

o MOVE -

repeatedly move
ship around based
on momentum in

the x and y
direction

Greenfoot Project: Asteroids

1. Get Moving

Greenfoot

World, Actor, act() / run /
reset framework

angle of ship turn, steps
to move ship = speed

Asteroids

rocket turn, thrust,
movement

2. Off Screen

to be completed

x/y coordinates
of ship position

screen wrap
around

3. Collisions

to be completed

variables, conditional
logic, event handling

ship crashing into
asteroids, asteroids
crashing into ship

5. Momentum

to be completed

trigonometric functions,
velocity, acceleration

4. Sh 1 to be completed message passing, a::lelli)is;lso Ozlitrtl;o:lblillilteg
’ OOtlIlg p relational expressions 5 5 y
bullet
gliding based on

momentum and thrust
acceleration

Greenfoot Phase 1: Get Moving

public class Rocket extends Actor
{ ’ Scripts
/#*
* Act - do whatever the Rocket wants to do. This method is called whenever o
* the "Act' or 'Run' button gets pressed in the environment. " when Up arrow 'ke, pressed

Y
public void act() move gl steps
{

checkKeys(); p—

} ‘ when down arrow | key pressed
J4 move m steps

* Check whether there are any key pressed and react to them.

*/ < -
private void checkKeys() ‘ when left arrow key pressed
{ turn !)) degrees

1f(Greenfoot.isKeyDown("up")) {
moveSteps(1@);
}

1f(Greenfoot.isKeyDown("“down")) {
moveSteps(-10);
}

i1f(Greenfoot.isKeyDown("left")) {
turnLeftDegrees(5);
}

“ when right arrow 7 key pressed

turn & B degrees

" when clicked :

forever

i key Uup arrow |pressed?

play sound Thrust

1f(Greenfoot.isKeyDown("right")) {

turnRightDegrees(5); switch to costume rocketWithThrust

} switch to costume rocket

Scratch Movement (review)

Scratch subtract Scratch Mathematics
Coordinate — > direction from > Coordinate
System 90 to get... System
11590075

N 000 0
=15 15 30°

90°

Greenfoot Movement - Part 1

Greenfoot subtract Greenfoot Mathematics 360
Actor—cqordinate direction from > Coordinate ¢ - Actor.
getRotation() gystem 360 to get... System JStRotation())
255° 285° 109§O°75°
(o] 2700 o o (]
240 300 120 60

240° —7300°
75° 255°27075g5¢

0 90°

105

Greenfoot Movement

public void turnLeftDegrees(int degrees)
{ World classes

int rotationl; World

. . -~ e ——

int I"Otatlonz o when left arrow | key pressed %
turn t) B degrees

Il AsteroidsWorld

/ current degrees of rotation of the ship N :
. . t
rotationl = getRotation(); coneEeee
'/ new degrees of rotation of the ship — _ —
/ SUBTRACT to go left Ran) iontarrow [
SUD AL - 4 =i L
. . d
rotation2 = rotationl - degrees; turn & €8 degree-
setRotation(rotation2);
} .
public void act()
public void turnRightDegrees(int d) {
{ checkKeys();
: : }
int rotationl;
int rotationZ; VAl
* Check whether there are any key pressed and react to them.
i

// current degrees of rotation of the ship
rotationl = getRotation();

'/ new degrees of rotation of the ship

" ADD to go right }
rotationZ = rotationl + d;

private void checkKeys()

1f(Greenfoot.isKeyDown("left")) {
turnLeftDegrees(5);

i1f(Greenfoot.isKeyDown("right")) {

setRotation(rotation2); . turnRightDegrees(5);

e e L P P P P e P L [L]
L T T TP P TP TR TP T T [
LT T P P P P T R T T T P T T T T 1

‘& 100
2. 100

45"

b 100 100 100 100

]] LT T T T T I ANl (gl Sl T LI [T T
T T P T T T P e e T T T T
HINEEEEEEEEEENEEE NN N I, 1 7 NN e
AN EE NN L L. A _JdEREENEEEOEEEENEN
e e e T T P L TR]
T P T e P e P e TR e e g
N T Y I S I
T e T e T T
T e e
ANEESEEEEENEENE NN
IIIIIIIIIIIIIIIIIII=

]
]

I R
EAEEEE RN R
EEENEN
j
[

]
w NN
{AIIIIIIIIIIIIIII
HhdhdEEEEEREERER

]
-
E
=
=
HEEEREEEEFENEEEENER I= ()()()
Illlllllllllllllllll= e l_OCI]fICNW’{) ‘)) <;> -

E setRotation(45);

s

-

-

setLocation(109,100):

Y
®

]
II=IIIIIIIIIIII-I ll=llllll
hﬁdlllllllllllllllllll

]

!!lllllllll.lllll

L]
F.Illllllllllllll
EEEEEESRAEENEENE
I I O I A o
ENESEEEEENOEEEE N
LT T[] —|
EENEEDAEEDEEEE. = N3
LT T T T T T T T T T W

A"’

Greenfoot Movement - Part 1

e WHAT, NO move () ??? - There is no “move

forward in the current direction” method in the
Actor class, so we’ll need to make our own
* Thankfully, we already have what we need to do
this, which is:
* the current direction
e int getRotation|()
* a way to get the x and y position
®int getX()
®int get¥ ()
* a way to set the x and y position
move F ¢ steps e setLocation (int x, int y)
® Math functions for x and y portion of a vector

e Math.cos (double angle)
e Math.sin(double angle)

Scratch - Reinventing move

move I 4 steps

-~ o |f you had no block in Scratch, you

could do the same thing, because in Scratch you also
have:
® the current direction

Il direction

® a way to get the x and y position

® a way to set the x and y position
:
® Math functions for x and y portion of a vector
LM C0S |of direction
LM sin _|of direction

of direction

{X:-240 Y_;(i)

® Math functions for x and y portion of
a vector tell us how much to change x

and y by if we're not using
cos |of direction

(X:O,"I’:IQO)

f(x) m tan(__i) * 100

f(x) = cos(x) * 100

F(x) = sin(_;‘i) * 100

(%:0,¥:-180)

angle=0
0

15

30

45

60

75

90

105
120
135
150
165
180
195
210
225
240
255
270
285
300
315
330
345
360

cos(0)
1.0
0.9659
0.8660
0.7071
0.5
0.2588
0.0
-0.2588
-0.5
-0.7071
-0.8660
-0.9659
-1.0
-0.9659
-0.8660
-0.7071
-0.5
-0.2588
0.0
0.2588
0.5
0.7071
0.8660
0.9659
1.0

sin(9)
0.0
0.2588
0.5
0.7071
0.8660
0.9659
1.0
0.9659
0.8660
0.7071
0.5
0.2588
0.0
-0.2588
-0.5
-0.7071
-0.8660
-0.9659
-1.0
-0.9659
-0.8660
-0.7071
-0.5
-0.2588
0.0

Scratch - Reinventing move

tan(9)
0.0
0.2679
0.5773
1.0
1.7320
3.7320
infinity
-3.7320
-1.7320
-1.0
-0.5773
-0.2679
0.0
0.2679
0.5773
1.0
1.7320
3.7320
infinity
-3.7320
-1.7320
-1.0
-0.5773
-0.2679
0.0

Scratch - Reinventing move

angie 105 an Ie = 30 angle=0 cos(®) sin(®) tan(®)

cos(30) = -0.2588 : 25 (1).8659 g'gsss 3.2679

sin(30) = 0.9659 05(30) = 0.866 3855 05773
sin(30) = 0.5 35 07071 0.7071 1.0

60 0.5 0.8660 1.7320

75 0.2588 0.9659 3.7320

90 0.0 1.0 infinity

120 -0.5 _ 0.8660 -1.7320
135 -0.7071 0.7071 -1.0

150 -0.8660 0.5 -0.5773

165 -0.9659 0.2588 -0.2679
180 -1.0 0.0 0.0

195 -0.9659 -0.2588 0.2679

210 -0.8660 -0.5 _ 0.5773
(25___-0.7071 -0.707D1.0

240 -0.5 -0.8660 1.7320

255 -0.2588 -0.9659 3.7320

270 0.0 -1.0 infinity

285 0.2588 -0.9659 -3.7320

_ apn GO oE—ogee) 17350
angle = 225 angle = 300 315 0.7071 -0.7071 -1.0

cos(30) =-0.7071 cos(30) = 0.5 330 0.8660 -0.5 -0.5773

345 0.9659 -0.2588 -0.2679

sin(30) =-0.7071 sin(30) =-0.866 360 10 0.0 0.0

Scratch - Reinventing move

Trigonometric

Function
% Explanation for sine, co-
‘ sine and tangent

| T

go to x: @ y: O | |
~ sin |of le
point in direction EEhd '<

move steps

>— tan |of angle

® Since cos() and sin()
return a value

/ beteween O and 1,

go to x: @ v: O multiply the result by
point in direction CThd the steps you would
set steps |to have used in the move

block to get the x and

move F 4 steps

change x by " steps * " c0s |of direction

change y by $Sm——— Yy com ponenf

Greenfoot Phase 1: Get Moving

public class Rocket extends Actor

{ - Scripts
/#* /g
* Act - do whatever the Rocket wants to do. This method is called whenever rocket o
* the "Act' or 'Run' button gets pressed in the environment. {,"hen up arrow |ke, pressed
i
public void act() move @l steps
{
checkKeys(); p—
} ‘ when down arrow | key pressed
Jhh move m steps
* Check whether there are any key pressed and react to them.
* / < -
private void checkKeys() when leftarrow | key pressed
{ turn !)) degrees

1f(Greenfoot.isKeyDown("up")) {
moveSteps(1@);
}

1f(Greenfoot.isKeyDown("“down")) {
moveSteps(-10);
}

i1f(Greenfoot.isKeyDown("left")) {
turnLeftDegrees(5);
}

“ when right arrow 7 key pressed

turn & B degrees

" when clicked :

forever

i key Uup arrow |pressed?

play sound Thrust

1f(Greenfoot.isKeyDown("right")) {
turnRightDegrees(5);

switch to costume rocketWithThrust

} switch to costume rocket

java.lang.Math

javalang

) f €0S |of direction
Class Math CO)92
java.lang.Object Sin of direction

L java.lang.Math

Motion Control

public final class Math
extends Object

The class Math contains methods for performing basic numeric operations — Operators
such as the elementary exponential, logarithm, square root, and —
trigonometric functions.

Looks Sensing

Method Detail

sin COS

public static double sin(double a)jf public static double cos(double a)

Returns the trigonometric sine of an angle. J§ Returns the trigonometric cosine of an angle.

Parameters: Parameters:

a - an angle, in radians. a - an angle, in radians.
Returns: Returns:

the sine of the argument. the cosine of the argument.

‘letter Y of TN

-~k

Greenfoot - Inventing move()

%

change x by " steps * 0SS |of direction

public void moveSteps(int steps)

{

int x1;
int x2;
int yl;
int yZ;
int direction;

= getX();
yl getY();
direction = getRotation();
// new X value 1s old x value plus the x component of current direction
xZ2 = x1 + (steps * (Math.cos(direction)));

ew vy value 1s old y value minus the y component of current direction

/N
y2 = yl + (steps * (Math.sin(direction)));

change y by " steps * sin |of direction

setLocation(x2, y2);

* Try compiling this, does everything come out OK?

Greenfoot - Inventing move()

public void moveSteps(int steps)

{

int x1;
int x2;
int yl;
int y2;
int direction;

x1 = getX();

yl = getY(Q);

direction = getRotation();
// new X value 1s old x value plus the x component of current direction
x2 = x1 + (steps * (Math.cos(direction)));

'/ new y value 1s old y value minus the y component of current direction

y2 = yl + (steps * (Math.sin(direction)));

setLocation(x2, y2);

possible loss of precision
found : double required: int

Greenfoot - Inventing move()

public void moveSteps(int steps)

{

int x1;

int x2; 9o
int y1;
int yZ2;
int direction;

change x by " steps * 0SS |of direction
x1 = getX(); - - N
yl = getY(); change y by steps * Sin |of direction
direction = getRotation();

// new X value 1s old x value plus the x component of current directiqf
xZ2 = x1 + (steps * (int) (Math.cos(direction))).

'/ new y value 1s old y value minus the y component of current direction

yZ2 = yl + (steps * (int) (Math.sin(direction)));

setLocation(x2, y2);

* |t now compiles but... does it look right?

COS

(2
public static double{ cos(double a)

Returns the trigonometric cosine of an angle.

Parameters:

a - an angle, in radians.
xeturns:

the cosine of the argument.

sin
public static double{sin(double a)

Returns the trigonometric sine of an angle.
arc length = radius

el e

Parameters:

a - an angle, in radians.
eturns:
the sine of the argument.

A

radius I

Greenfoot - Inventing move()

public void moveSteps(int steps)
{

int x1;

int yl;

int x2;

int y2;

int direction;

/ t the status of the rocket X value, vy value and direction
x1 = getX();
yl = getY();
direction = getRotation(),
new X vaiLue 1S oLd X vaiLue pLus

‘ the rent
x2 = X1 + (1nt)(steps - (Math cos(Math toRad1ans(d1rect10n))),

'/ new v value 1s old v value minus onen airection

y2 = y1 + (1nt)(steps o (Math. 51n(Math toRadlans(d1rect1on) D),

setLocation(x2, y2);

-
el
-

ection

}

® Does our ship behave now?

Greenfoot - Inventing move()

* We now have a working
moveSteps (int steps)
for our Rocket Actor class
in Greenfoot

e Which behaves ||ke thls

® Which does te sqme '

thing as this @&
movesteps | &

Greenfoot - change costumes

® Since we're moving
correctly now, let’s add

when clicked

forever

f key upamow |pressed? image changes

play sound Thrust ® yse ACtor ° SetImage

switch to costume rocketWithThrust (String) Qoo
P C

kil | private void checkkeys()

1f(Greenfoot.isKeyDown("up")) {
setImage("rocketWithThrust.png");
moveSteps(10);

}

else {
setImage("rocket.png");
}

Greenfoot - make noises

Sound Recorder

Record| |Play selection| |Trim to selection

Not Saved

Filename: Thrust .wav

® Since we're moving correctly now, let’s play a
sound when we moveSteps (int)

¢ Create a new sound and use
GreenfootSound.play() to play it

Greenfoot - GreenfootSound

greenfoot

Class GreenfootSound

java.lang.Object
greenfoot.GreenfootSound

public class GreenfootSound

extends java.lang.Object

Represents audio that can be played in Greenfoot. A GreenfootSound loads the audio from a file. The sound cannot be played several times simultaneously, but can be played
several times sequentially. Most files of the following formats are supported: AIFF, AU, WAV, MP3 and MIDI.

Constructor Summary

GreenfootSound(java.lang.String filename)
Creates a new sound from the given file.

Method Summary

boolean isPlaying()
True if the sound is currently playing.

void pause()
Pauses the current sound if it is currently playing.

void play()

Start playing this sound.

void playLoop()
Play this sound repeatedly in a loop.

void stop()
Stop playing this sound if it is currently playing.

java.lang.String toString()
Returns a string representation of this sound containing the name of the file and whether it is currently playing or not.

Greenfoot - make noises

public class Rocket extends Actor

{
GreenfootSound thrustSound;
/* * Not Saved
* Rocket constructor Flename: T wav (Save)
o' 4
{
thrustSound = new GreenfootSound("Thrust.wav");
}
private void checkKeys()
{

1f(Greenfoot 1sKeyDown(up")) {
naage pcketWithThrust., png DR

thrustSound. play(),

Greenfoot Phase 2: Off Screen

public void act()

{
checkKeys():

checkOffScreen();
}

Greenfoot Phase 2: Off Screen

* Check whether the rocket is headed off screen and put it on the other side of the screen

* / OOOO
public void checkOffScreen()
{

int x;
int y;

X
Yy

getX();
getY();

Scratch - how far is too far®

o If the Scratch screen boundary is 240 left and right,
can x be > 240 or <-2402

® If the Scratch screen boundary is 180 up and down,
canybe>180 or <-1802 \

e

-
(@
——
O
b
L
-
O
——
3
O
- -

Greenfoot

screen boundary is set to 0 to 600

¢ [f the Greenfoot
left and right, can x be > 600 or < 02

¢ If the Greenfoot screen boundary is set to 0 to 400

‘ibfi‘afa

can y be > 400 or < 02

/
I R) A

up and down

private void checkKeys()

.Y

L P T e T T P P T PP T T T T T [14
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII' 1HIIII

1f(Greenfoot.isKeyDown("“up")) {

- 1,

- 1, getY());

setLocation(getX(), getY() + 1);
setLocation(getX() + 1, getY());

setLocation(getX(), getY()

setLocation(getX()

-
~
~
o
=
=
S
| -
w
m
>
)
~
N
=
3
.
=
@
Y
bl
C)
o’
Y
e

1f(Greenfoot.isKeyDown("down")) {
1f(Greenfoot.isKeyDown("left")) {

HENEEEEEEON RPN NN ENL. ~
N T G N O I B A ol

Off Screen

N
o
AN
O

- e

o
O
O

Gl
c
O
O
-

O

+

-
=
o
(-
-
Q
Q
(-
w
v
3
+!
X -
f
HEENENEEEEENEEEEEE vgus
PP o
ENENEEED (PP -
SEEEEEER L P e P T]
ARENEEEE ANEEEEEINENEEEER NN QL
PP PP PR LT P T Q
~
o
v
+

Actor
System.out.println("screenRight="

»

w.getWidth();

1nt screenLeft;
int screenRight;
screenDown = w.getHelght

int screenlp;
1nt screenDown;

screenLeft
screenlUp = 0,

public_void addedToWorld(World w) {
screenRight

public class Rocket extends

public void checkOffScreen()

{

Greenfoot Phase 2: Off Screen

® This can be tricky to get right and

W:Lnt X, CQCO . " " .

tnt not have things “stuck” on a side of
x = getX():

Y - getrO: the screen or the corner

1f (X <= screenLeft)

{ ® Greenfoot 2.0 also includes a

X = screenRight - 1; .
o option for Worlds:

} else

1f (x >= screenRight - 1) .

{ public abstract class World
extends java.lang.Object

World is the world that Actors live in. It is a two-dimensional grid of cells.

X = screenLeft;

}
if (y <= screenUp) All Actor are gssogiated Wit.h a World and can ge'.t access to the Woﬂd object. The size of cells can pe speciﬁgd
{ at world creation time, and is constant after creation. Simple scenarios may use large cells that entirely contain
_ 1: the representations of objects in a single cell. More elaborate scenarios may use smaller cells (down to single

} Iy = screenDown - 1; pixel size) to achieve fine-grained placement and smoother animation.

eLse
if (y >= screenDown - 1) The world background can be decorated with drawings or images.
{

Constructor Summary
World(int worldWidth, int worldHeight, int cellSize)

} _ Construct a new world.
setlLocation(x, y); World(int worldwidth, int worldHeight, int cellSize,{boolean bounded)

Construct a new world.

y = screenUp;

Greenfoot Phase 3: Collisions

ide
o — . S .
o to x: ' pick random EXT) to 1) y: pick random BTL) to

(——\
n direction ' pick random Q1) to §E{)

* To provide something to collide with,
our Asteroid Actors will be random

¢ The Greenfoot version of will use the

java.util.Random.nextInt (int max) method

java.util.Random

> —TTTT)
java.util pick random to ‘

Class Random
63 @e

Control

Sensing

java.lang.Object
java.util.Random

Operators

Variables

public class Random extends Object

An instance of this class is used to generate a stream of pseudorandom
numbers. The class uses a 48-bit seed, which is modified using a linear
congruential formula.

Method Detail

int nextInt(int n)
Retury idorandom, uniformly distributed int value

(inclusive and the specified value

number generator' s sequence.

Greenfoot Phase 3: Collisions

public class Asteroid extends Actor

{ public void act()
GreenfootSound explodeSound; {
int screenLgft;. checkOffScreen():
int screenRight; checkForCollision();
L screen p;

int screenDown; }

(Random_random;

public Asteroid() {
explodeSound = new GreenfootSound("Explosion.wav");
random = new Random();

}

public void addedToWorld(World w) {
screenLeft = 0; Q0o
screenRight = w.getWidth(); @
screenlp = 0;
screenDown = w.getHeight();
setRotation(random.nextInt(360));

pick random [i) to EE)

Actor - Collision Detection

greenfoot

Class Actor

java.lang.Object
greenfoot.Actor
public abstract class Actor
extends java.lang.Object
An Actor is an object that exists in the Greenfoot world.

Every Actor has a location in the world, and an appearance

(that is: an icon).

Method Summary

javautil.List getIntersectingObjects(java.lang.Class cls)
Return all the objects that intersect this object.

java.util.List getNeighbours (int distance, boolean diagonal, java.lang.Class cls)
Return the neighbours to this object within a given distance.

java.util.List getObjectsAtOffset (int dx, int dy, java.lang.Class cls)
Return all objects that intersect the center of the given location (relative to this object's location).

java.til.List getObjectsInRange(int radius, java.lang.Class cls)

Return all objects within range 'radius' around this object.
Return an object that intersects this object.

Actor getOneObjectAtOffset(int dx, int dy, java.lang.Class cls)

Return one object that is located at the specified cell (relative to this objects location).

Greenfoot Phase 3: Collisions

public class Rocket extends Actor Actor classes

{

public void act()
{

Actor

Fal

} &5 Asteroid |

private void checkCollision() { :
Asteroid a: - Explosion
a = (Asteroid) getOnelntersectingObject(Asteroid.class);

any ob ject recurned means there's a collision, no need to determine how mar

checkKeys();

1 <L =t .
checkCollision();

// 1f there's a collision, replace the rocket with an explosion
if(a != null
getWorld().addObject(new Explosion getX getY
getWorld().removeObject(this);

Greenfoot Phase 3: Collisions

public class Explosion extends Actor

{

/** How many images should be used in the animation of the explosion */
private static int IMAGE_COUNT = 8;
/**
* The images in the explosion. This is static so the images are not
* recreated for every object (improves performance significantly).
*/
private static GreenfootImage[] images;
/** Current size of the explosion */
private int imageNo;
/** How much do we increment the index in the explosion animation. */
private int increment;

Actor classes

public Explosion() { Actor
IMAGE_COUNT = 8;

imageNo = ©@; Py
increment = 1: = Rocket

initialiselImages(); -
setImage(images[@]); {5 Asteroid

Greenfoot.playSound("Explosion.wav");

} ovmen]

array[] of explosion images

public class Explosion extends Actor
{
private static GreenfootImage[] images;
GreenfootImage baseImage = new GreenfootImage("explosion-big.png");
int maxSize = baseImage.getWidth(); PAS
int delta = maxSize / IMAGE_COUNT;)
int size = 0;
images = new GreenfootImage[IMAGE_COUNT];
for(int 1=0; 1 < IMAGE_COUNT; 1i++) {
size = size + delta;
images[1] = new GreenfootImage(baseImage);
images[1i].scale(size, size)

9, qzb' %45' iﬁa%? ;aaéb ;agh7
0 0 00& 00& '90‘, '90&/
W% % % % 5

%, 2

Greenfoot Phase 3: Collisions

Actor classes

public void act()

{
setImage(images[imageNo]);

1mageNo += increment;

Actor

]

1f(imageNo >= IMAGE_COUNT) { — 5 Asteroid
increment = -increment;
1mageNo += 1increment;

! ® Resulting order

if(imageNo < @) { of images[]

: getiorld().removeObject(this); Slements set by

} act () method:

012345676543210

Greenfoot Phase 3: Collisions

Actor classes

public void act()

{ . . Actor
setImage(images[imageNo]); o
imageNo += increment;

1f(imageNo >= IMAGE_COUNT) { 5 Asteroid

1ncrement = -increment; .
. . — Explosion
1mageNo += 1ncrement;
! ® Resulting order
if(imageNo < @) { of images[]

: getiorld().removeObject(this); Slements set by

} act () method:

012345676543210

Scratch Phase 4: Shooting

Scratch Phase 5: Momentum

TO BE COMPLETED “REAL SOON
NOW”(C)(R)(Pat. Pending)

